
Fast-Forward Reality: Authoring Error-Free Context-Aware
Policies with Real-Time Unit Tests in Extended Reality

Xun Qian∗
qxziuan@gmail.com

Meta Reality Labs Research &
Purdue University

Tianyi Wang
tianyiwang@meta.com

Meta Reality Labs Research

Xuhai Xu
xoxu@mit.edu

Meta Reality Labs Research &
MIT

Tanya R. Jonker
tanya.jonker@meta.com

Meta Reality Labs Research

Kashyap Todi
kashyap.todi@gmail.com
Meta Reality Labs Research

(a) (b) (c) (d)

Figure 1: Overview of the Fast-Forward Reality workflow: (a) An end-user initiates an authoring session of a context-aware
policy (CAP) while being immersed in an Extended Reality (XR) authoring environment. The user includes context instances
into the CAP by selecting the corresponding XR icons. (b) The system adaptively generates multiple unit test cases based on the
context history of the user’s everyday routines and the CAP, and highlights them with XR visualizations. (c) The user acts out
the suggested test cases by in-situ actions and selections of the involved context instances to intuitively validate whether the
CAP reacts as expected under each test case. (d) The user refines the CAP after noticing potential improvements and repeats the
validation until the CAP is error-free under all test cases.

ABSTRACT
Advances in ubiquitous computing have enabled end-user author-
ing of context-aware policies (CAPs) that control smart devices
based on specific contexts of the user and environment. However,
authoring CAPs accurately and avoiding run-time errors is challeng-
ing for end-users as it is difficult to foresee CAP behaviors under
complex real-world conditions. We propose Fast-Forward Reality,
an Extended Reality (XR) based authoring workflow that enables
end-users to iteratively author and refine CAPs by validating their
behaviors via simulated unit test cases. We develop a computational
approach to automatically generate test cases based on the authored
CAP and the user’s context history. Our system delivers each test
case with immersive visualizations in XR, facilitating users to verify

∗Work completed when the first author interned at Meta Reality Labs.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CHI ’24, May 11–16, 2024, Honolulu, HI, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0330-0/24/05. . . $15.00
https://doi.org/10.1145/3613904.3642158

the CAP behavior and identify necessary refinements. We evaluated
Fast-Forward Reality in a user study (𝑁=12). Our authoring and
validation process improved the accuracy of CAPs and the users
provided positive feedback on the system usability.

CCS CONCEPTS
• Human-centered computing → Mixed / augmented reality;
Interactive systems and tools.

KEYWORDS
Context-Aware Policy, Extended Reality, Validation, Unit Test
ACM Reference Format:
Xun Qian, Tianyi Wang, Xuhai Xu, Tanya R. Jonker, and Kashyap Todi.
2024. Fast-Forward Reality: Authoring Error-Free Context-Aware Policies
with Real-Time Unit Tests in Extended Reality. In Proceedings of the CHI
Conference on Human Factors in Computing Systems (CHI ’24), May 11–
16, 2024, Honolulu, HI, USA. ACM, New York, NY, USA, 17 pages. https:
//doi.org/10.1145/3613904.3642158

1 INTRODUCTION
Developments in ubiquitous computing [96] and smart environ-
ments [19] have enabled automating functionality of Internet-of-
Things (IoT) and smart devices. Context-aware policies (CAPs) can
define behaviors of these devices under personalized contexts of

https://orcid.org/0000-0003-1976-7992
https://orcid.org/0000-0001-9382-6466
https://orcid.org/0000-0001-5930-3899
https://orcid.org/0000-0001-8646-5076
https://orcid.org/0000-0002-6174-2089
https://doi.org/10.1145/3613904.3642158
https://doi.org/10.1145/3613904.3642158
https://doi.org/10.1145/3613904.3642158

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Qian, et al.

end-users and environments [24] (e.g., turn on smart lights after
sunset). With trigger-action programming [84], end-users can au-
thor customized CAPs by specifying context factors as triggers (e.g.,
‘after sunset’ and ‘leaving home’), and smart functions as actions
(e.g., ‘turn on the lights’ and ‘turn off the A/C’). To address diversi-
fied user needs, researchers and commercial products have greatly
expanded the range of context factors to include a variety of envi-
ronmental identities (e.g., time, temperature, weather, smart objects
[3, 26, 42, 62, 102]), as well as user’s location [49, 89, 101], status
[104], and activities [92, 98]. While most existing tools focus on
enabling end-users to author CAPs with great flexibility, a runtime
issue emerges: it is challenging for users without programming
skills to verify that the customized CAPs will behave as intended
under varying contexts.

The following two scenarios illustrate how the authored CAPs
may deviate from the user’s original expectations. The first CAP,
“Dining”→ “Turn on the TV”, was authored on a relaxed evening,
intended to automate an entertaining event while dining. However,
this CAP is unexpectedly triggered another day when the user eats
sandwiches while busily working in the study room. The second
CAP, “Doing yoga in front of the living room TV at night”→ “Play the
yoga playlist”, was created by adopting the exact contexts during
the authoring process. On another morning, the user expects music
while doing yoga in the bedroom, yet, the authored CAP will not
activate. These examples highlight two types of inaccuracies that
frequently occur in CAP authoring. The first user forgot to consider
the location and activity factors. So, the CAP is under-specified
and may trigger actions in unwanted scenarios (false positives).
Conversely, the second CAP is over-specified since the user did
not realize that redundant context factors were added so that the
CAP could not be triggered in other desired scenarios (false nega-
tives). Such failures, if happen frequently, can lead to annoyance,
frustration, loss of trust, and ultimately abandonment of such sys-
tems [64]. To avoid these errors, systems should provide users with
intelligibility [8] such that users can accurately predict the function-
ality of an authored CAP under various scenarios. However, prior
authoring tools and workflows have not investigated how they can
address this crucial challenge. Hence, our work is motivated by the
need for CAP authoring systems that assist end-users in proactively
eliminating potential inaccuracies in CAPs before deploying them.

In the software engineering industry, unit testing [107] demon-
strates a systematic approach to effectively avoid run-time errors
[34, 76, 87]. It is worth exploring whether this principled method
could be used to ensure correctness in the context of end-user
authoring of CAPs. A high-quality unit testing relies on a set of
carefully constructed test cases that is not only comprehensive
enough to cover all corner cases but also precise enough with no
redundancy. Nevertheless, unlike expert programmers and develop-
ers, end-users lack the expertise. If asking users to manually design
test cases, they may be biased to the present contexts or consider
contexts that are irrelevant to the current CAP [74, 80]. To this end,
we aim to assist common users in generating test cases that are
tailored to their local contexts, life routines, and the authored CAP.
This way, users can efficiently validate the CAP in scenarios that
are highly possible to happen in the runtime.

In addition, expert software engineers have the expertise to de-
termine the expected outputs of each test case and identify errors

in the original function. In CAP authoring, considering that CAPs
are deployed in end-users everyday environments (e.g., home, of-
fice), test cases include diversified combinations of not only general
digital contexts (e.g., current time, having a meeting) but also space-
sensitive contexts that vary across each deploying environment
(e.g., smart object states or human actions at different locations).
For instance, in an environment with multiple smart lamps around
several couches in the living room, it introduces ambiguity to de-
scribe test cases that involve a specific smart lamp using typical
text-based unit test tools [71]. Further, it requires additional mental
efforts for end-users to distinguish the imaginary contexts of a test
case from the present contexts. Hence, we aim to design an intuitive
way to deliver each test case so that non-expert users can effort-
lessly interpret it as a real scenario that may happen in the local
environment, facilitating users to specify the desired performance
and identify errors in the authored CAP.

With these major considerations, we propose Fast-Forward
Reality, a novel system that enables users to validate and make
corrections to CAPs during authoring by following the “test-fault-
correct” routine of unit testing. Fast-Forward Reality first introduces
a computational framework that supports generating high-quality
test cases tailored to each user and the deploying environment.
The framework organizes a user’s context history perceived by
intelligent technologies (e.g., computer vision, IoTs, head-mounted
devices) as a series of contextual combination instances. By ana-
lyzing the frequency and correlation of different contexts, it under-
stands the user’s habits and preferences. Given an authored CAP,
the framework can compose test cases with specific combinations
of related contexts where the CAP has a high possibility to hap-
pen in their lives but may perform inaccurately. In this way, the
user can efficiently validate the CAP with highly customized test
cases. Moreover, inspired by the prior works that immerse users
in Extended Reality (XR) to facilitate the interpretation of space-
sensitive contexts [16, 35, 92], Fast-Forward Reality adopts an XR
interface that delivers each test case by overlaying (e.g., smart object
states), augmenting (e.g., time), and placing (e.g., human action)
corresponding context visualizations in-situ in either the physical
environment or the virtual replica. The user can intuitively eval-
uate whether the CAP performs correctly as if experiencing it in
real life. Meanwhile, the XR interface serves as the main authoring
interface to initiate an authoring session (1a) and iterate the CAP
(1d). By repeating the author-test-refine process, the user gradually
removes the ambiguity of the CAP and becomes confident that the
CAP will perform accurately once deployed. In summary, the main
contributions of this work are:

• An author-test-refine workflow that enables end-users to validate
and iterate CAPs at author-time by evaluating their performances
via diverse simulated unit tests.

• A computational approach for generating unit test cases that are
personalized to each user and environment to effectively reveal
potential run-time inaccuracies of the CAP.

• An XR-based authoring interface that uses immersive visualiza-
tions to offer intuitive understandings of contexts presented in
test cases, and direct operations to define and iterate the CAP.

Fast-Forward Reality CHI ’24, May 11–16, 2024, Honolulu, HI, USA

2 RELATEDWORK
The main contribution of our work is a novel approach for end-
users to author and validate CAPs in XR. To this end, we review the
current literature on context-aware computing, end-user authoring,
validation techniques, and immersiveness in XR.

2.1 Context-Aware Policies for End-Users
With the development of Internet-of-Things (IoT) devices [48] and
context-aware systems [1, 77], researchers have explored applica-
tions that automatically execute smart functions in everyday life
when pre-specified contexts are detected [23]. We describe such
automated applications as context-aware policies (CAPs).

Following Dey’s taxonomy of contexts [24], four major types of
human-centered contexts have been applied for such applications:
identity, location, status(activity), and time. While time and identity
(e.g., weather and calendar events) are straightforward contexts
that can be easily sensed by computing systems [3, 26, 42], sensing
location, activity, and user state is a more challenging problem. Prior
works have used external motion sensors (e.g., RFID [95] and UWB
[68]), information-theory-based frameworks [75], or predefined
privacy-preserving queries [15] to determine user location. Beyond
typical IoT applications, user location has been used to provide
Ambient Assisted Living (AAL) services for the elderly [39, 57].
Activity detection has been explored using both external [17] and
wearable [90] sensors to enable smart policies such as reminders
and notifications based on user interactions (e.g., remind a resident
that a specific food is about to expire during meal preparation).
Further, description logic rules [97], and machine learning and
deep learning approaches [10, 28, 98] have been applied to infer
human activities from raw sensor data towards deploying activity-
aware policies such as starting workouts or launching applications.
Light and noise sensors have been used to infer other human states
such as tiredness and whether a person is sleeping to automate
smart home accessories such as lights and window blinds [104].
IMU sensors have been used for fall detection [33, 43] to provide
automatic AAL services. Researchers have also proposed several
approaches to perceive the status of IoT objects and leverage them
into CAPs. Smart medicine boxes and bottles [9, 62], water bottles
[11], and refrigerators [31] are capable of counting and identifying
their contents towards providing relevant CAPs such as smart
reminders.

While many context-aware systems can provide generalized
automatic services, the habits and needs of end-users vary in daily
life. Consequently, context factors and desirable policies are also
highly dependent on personal preferences [24]. Thus, enabling
end-users to author CAPs that include user-defined contexts and
personalized smart functions has been an area of great interest.

2.2 End-User Authoring of Context-Aware
Policies

To help end-users author context-sensitive applications, ‘trigger-
action’ programming has been broadly adopted following the find-
ings from an elicitation study [26]. Here, an end-user specifies a
policy with a series of contexts as the trigger and a smart func-
tion as the action. At run-time, when all the specified contexts are
present, the system executes the corresponding action.

Block-based programming in the style of ‘if this then that’ [42,
83] has been widely used in commercial products such as Alexa
routine [3] and Apple Shortcuts [78]. Here, a user selects contexts
represented using 2D icons into the ‘this’ block and adds smart
functions into the ‘that’ block. Alternatively, the user can define
such CAPs through sketches and descriptions [26], programming-
by-demonstration [25, 46], or by segmenting maps for location-
aware applications [49]. Augmented Reality (AR) and Virtual Reality
(VR) authoring techniques have recently been explored to provide
users with spatial awareness and immersiveness. CAPturAR [92]
supports users to author activity-based context-aware applications
when referring to their past activities that are visualized using
AR avatars. By defining proxemics with physical surroundings
using a mobile-device-based AR authoring interface, ProGesAR
[101] and ProObjAR [102] enable users to include locations, object
movements, and gestures into CAPs. Further, Ivy [29] immerses
users into the digital twin of an indoor environment to define logic
connections among smart objects via visual programming, while
Haidon et al. [36] enables a caregiver to author CAPs tailored to a
resident’s habits by selecting the remote resident’s spatial-sensitive
contexts that are mapped to the caregiver’s local AR space using a
semantic mapping approach.

Existing efforts have mainly targeted end-user challenges in
authoring CAPs with specific context triggers and actions. Some
prior research has supported users to manually test authored CAPs
by either selecting the triggering contexts on a 2D GUI [26, 74]
or by demonstrating the human activities and proxemics in AR
[92, 101, 102]. However, prior works do not investigate whether
the user-authored CAPs perform according to user expectations in
diversified run-time scenarios. When such automation policies be-
have unexpectedly, users can lose trust and abandon these systems
[64]. In this paper, we aim to address this issue by facilitating the
validation and refinement of CAPs during authoring.

2.3 Validation of Context-Aware Policies
During real-world usage, end-users may encounter complicated
contexts with diverse and unexpected edge cases [21, 54, 58]. Thus,
validating CAPs under such varied scenarios and resolving dis-
crepancies has been widely explored in professional context-aware
application development. By adopting the approach of unit testing
[37, 107], researchers have proposed multiple architectures and
frameworks to help application developers design effective unit
test cases to validate context-aware applications.

First, prior works propose data-driven approaches to generate
diversified contextual scenarios to reflect the complex run-time con-
ditions [93]. CASS [69] proposes an architecture to automatically
generate virtual sensory data for context-aware system developers
to rapidly test and identify conflicts in the context-aware systems.
TestAware [55] allows developers to design test cases for mobile
context-aware applications by downloading, replaying, and emu-
lating contextual data on either physical devices or emulators. On
the other hand, it is impractical to validate countless real-world
scenarios. The number of test cases should be constrained while
maintaining the effectiveness of the validation. Context diversity
[87, 88] has been used to address this concern, where the distance
between test cases is used to ensure diversity. Other model-based

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Qian, et al.

approaches [34, 63, 76, 103] have been developed to efficiently gen-
erate test cases that can fulfill the validation requirements. Similarly,
this concern has been addressed in the research area of adaptive
systems. ScalAR [72] adopts the Genetic Algorithm to enable adap-
tive AR application authoring within a small scale of indoor layouts.
It considers how to generate the most representative and diversified
scenes with spatial and identity variations to help AR designers effi-
ciently validate the AR element behaviors and identify failure cases.
Inspired by these prior arts, we distill 3 major considerations for
validating CAPs: (1) test cases should cover diversified and nuanced
real-world scenarios, (2) test cases should be diverse but concise so
that all potential scenarios can be captured with a limited number
of test cases to ensure an efficient validation process, and (3) test
cases should be able to effectively detect faults in applications.

Creating test cases that meet these criteria is a challenging task.
Unlike professional developers, end-users may lack the expertise
to carefully design suitable test cases with varying complexity that
cover as many corner cases as possible. Further, unlike general
context-aware applications and programs, user-authored CAPs are
highly personal; as such, test cases should be personalized to each
user while addressing diverse scenarios. We believe that an auto-
matic approach to generating personalized and diverse test cases
can address these challenges.

Furthermore, to fully support novice users in validating and re-
fining their CAPs, how to present these test cases appropriately
remains challenging as a majority portion of the contexts perceived
by advanced AI modules are associated with the spatial information
(e.g., locations [101], proximity [102], interactions [40, 92], and IoT
states [41]). However, the above-mentioned CAP validation tools
do not address the need to enable local users to interpret the test
cases precisely. Since the test cases are designed by professional
developers who have a clear expectation of the outcome and so-
lution to iterate the context-aware functions. Yet, when end-users
author a CAP in their local environment without any expertise in
designing the test cases, the test cases should be delivered to the
users in an easy-to-understand manner. Two difficulties then pop
up if using the existing tools: First, as we mentioned in Section 1,
spatial-sensitive contexts often cause ambiguity when the referred
assets are duplicated in space, especially when a test case may in-
volve multiple contextual elements simultaneously. Prior research
[6, 7] has mentioned the inaccuracies caused by pure descriptive
narrations. Meanwhile, since end-users do not have the expertise
to design the test cases, feelings of non-confident and untrustwor-
thy will be raised if no feedforwards can be provided to end-users
[27, 85, 86].

Hence, in this paper, we endeavor to adopt an approach that
can intuitively represent the test cases to end-users, and more
importantly, facilitate the users to rapidly identify the errors in the
existing CAPs by thoroughly interpreting the provided test cases.

2.4 Immersiveness in XR
Motivated by prior research, we believe Extended Reality (XR) could
provide an effective medium to communicate test cases for valida-
tion to users. Enabled by spatial awareness of XR, prior works have
used virtual augmentations adjacent to relevant physical entities
to facilitate end-users to understand complicated contexts such as

human activities [13, 92], interactions [12, 40, 53, 91], and status of
smart objects [41]. Further, while being immersed in XR environ-
ments, end-users can experience simulated scenarios free from the
limitations of physical contexts such as user status and time. Users
can revisit what happened in the past via in-situ XR visualizations
of human activities [13, 30, 52] and interactions [73, 99], or virtually
immerse into other times and spaces [72, 94, 108]. Finally, through
immersive authoring [45], users can intuitively program and author
XR applications from within the target deployment environment
[38, 65, 66, 105], which enables a real-time and seamless transition
between authoring and testing.

To this end, our work develops an XR authoring environment
that enables users to (1) iteratively author a CAP, (2) immersively
evaluate auto-generated unit test cases with complex contextual
scenarios, and (3) directly manipulate test cases and observe sim-
ulated results to obtain feedback on whether a CAP performs as
expected and make refinements as needed.

3 FAST-FORWARD REALITY
We present Fast-Forward Reality, a novel XR-based workflow that
enables end-users to iteratively author accurate CAPs through unit
testing. To this end, we develop a computational approach for gen-
erating diverse and personalized unit test cases and an authoring
interface that provides users with effective CAP validation via im-
mersive visualizations. In this section, we define a set of design
goals, that guide the system development, and present a walk-
through to illustrate the “author-test-refine” workflow for a specific
CAP. Following this, we elaborate upon our technical approach and
system implementation.

3.1 Design Goals
In this work, we aim to develop a system that helps end-users
author accurate CAPs via real-time validation before deployment.
While being immersed in the XR authoring environment, a user can
experience multiple unit test cases that are personalized to their
previous activities and routines. Through simulated feedforwards,
the system provides intelligibility and enables refinement when
outcomes do not match original expectations. Consequently, users
can eliminate potential runtime inaccuracies that may surface dur-
ing initial authoring. To effectively support users in the authoring
and refinement process, we postulate that a system should fulfill
the following design goals.

(1) Personalization: As addressed in prior CAP authoring systems
[25, 26, 92], test cases should be closely related to the CAP
a user is authoring and personalized to their context history.
This enables the user to effectively refine CAPs by examining
contextual scenarios that are likely to occur in their everyday
life.

(2) Diversification: Prior works [55, 69] have addressed the need
to diversify the test cases by proposing different frameworks
and guidelines. Following their suggestions, to cover a wide
range of possible scenarios, test cases should be diverse and
capture edge cases that may cause unexpected outcomes.

(3) Brevity: Test cases should be concise such that users can clearly
identify factors that cause inaccuracies. Further, the number of

Fast-Forward Reality CHI ’24, May 11–16, 2024, Honolulu, HI, USA

End

Test Case Generation Algorithm
XR Authoring Interface

Context History

Unit Testing

…
Yes

No

EndStart Authoring

Refinement

Trigger Action

All test cases meet
expectation?

Observed ActionTested Trigger

Expected Action

Test Case 1

Observed ActionTested Trigger

X
Expected Action

Test Case n

Figure 2: The authoring workflow of Fast-Forward Reality. While being immersed in the authoring environment, a user starts
authoring to define a target action and initial context instances. The system generates test cases from the user-authored CAP
and context history. When the user starts unit testing, test cases are visualized to enable validation of the CAP’s behavior. If
unexpected instances are identified, the user refines the original CAP by editing the context instances. The user repeats this
process to iteratively refine the CAP until it meets their expectations.

test cases should be constrained such that they are tractable
within a limited time [87, 88].

(4) Interpretability: As we discussed above, since end-users may
not have professional programming expertise, it is cumbersome
to interpret a combination of multiple space-sensitive contexts
involved in a test case. And hence, it is difficult for end-users to
imagine possible iterations of the CAPs. Thus, we propose to
leverage the advantages of XR so that users can intuitively un-
derstand the complicated contexts and immersively experience
the test cases that may happen in the future.

(5) Seamlessness: While being immersed in the XR environment,
the interactions required for authoring and validating a CAP
should be fluent and consistent to ensure seamless transitions
in the author-test-refine workflow following the findings of
prior immersive authoring and spatial programming works
[29, 45, 66, 105].

3.2 Target Scenarios and SystemWalkthrough
In this paper, we identify the research scope where an increasing
number and types of contexts can be detected and included in
context-aware systems through modern AI modules (e.g., object
detection, activity recognition), IoT communication, and AR spatial
awareness. Prior works [25, 26, 49, 92, 101] have explored various
systems to integrate different contexts into context-aware systems.
We acknowledge their contributions and assume that it is straight-
forward to integrate these modules into a CAP authoring system.
We follow example scenarios that are similar to the one shown in
Figure 1 to illustrate the system design of Fast-Forward Reality in
the next sections. Specifically, a user could live in an apartment
with a layout similar to Figure 1. The user regularly wears a head-
mounted XR device with real-time object detection and activity
recognition capabilities. Meanwhile, smart objects such as smart
lights, TVs, music players, and coffee makers are present in this
space, while calendar events, dates, and weather information are
intrinsically available in their XR devices.

Figure 2 illustrates the workflow of Fast-Forward Reality in a
target scenario as mentioned above. Here, we explain it using the
example shown in Figure 1, where an end-user tries to author a

CAP to control a smart TV. The user lives in a studio apartment and
prefers to watch TV while eating. One day, as the user is watching
TV while sitting on the sofa, the user decides to author a CAP to
automatically turn on the TV during such situations.

Authoring: The user activates Fast-Forward Reality and begins
the authoring process. By selecting in-situ icons that represent ‘TV
is on’ and ‘location is sofa’ context instances, the user authors an
original CAP: ‘turn on the TV when I am on the sofa’ (Figure 1a).

Unit Testing: Then, they start the validation process to ensure
correctness. A computational algorithm examines the user’s context
history and the current CAP, and identifies that the user always ‘eat’
(activity) while ‘watching TV’, but rarely engages in other activities
such as ‘reading’ or ‘using the phone’. However, in the current CAP,
the user has not included any activity context factor. Additionally,
the context history indicates that when the ‘TV is on’, the ‘music
player’ is typically ‘off’. However, this case is not considered in the
CAP either. Therefore, the system generates a test case: ‘eating on
the sofa while the music player is off’, and visualizes it in the XR
environment (Figure 1b). The user interacts with the immersive
visualization and enacts the actions of sitting on the sofa and eating,
while the music is off, and observes the TV turning on (Figure 1c).

Refinement: Following the highlighted relevant contexts in
the test case, the user identifies their importance and refines the
under-specified CAP by adding the two suggested context instances
(Figure 1d). The CAP is now more accurate such that the TV is not
turned on when the user is engaged in other activities or listening
to music. And, the user keeps validating more system-generated test
cases based on the updated CAP until no refinements are needed. By
using Fast-Forward Reality, the user has successfully authored and
verified an accurate CAP to turn on their smart TV under desirable
contextual scenarios.

3.3 Framework for Authoring
In this section, we elaborate on the framework adopted by the
initial authoring and its connections with the context perception
techniques. It addresses three concerns: (1) following prior research,
how does Fast-Forward Reality detect and structure a user’s every-
day contexts, (2) during authoring, how does the user define the

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Qian, et al.

ActionTrigger

Diningroom-table Livingroom-sofa Kitchen-cupboard Eating Off

On

(a)

(b)

(c)

Noon Diningroom-table Eating Off WeekdayOnNo No Sunny… … …

Morning Bedroom-bed Using phone On WeekdayOffNo No Sunny… … …

Afternoon Studyroom-table Using laptop Off WeekdayOffYes No Sunny… … …

… … … … … … … … … … … …

… … … … … … … … … … … …

… … … … … … … … … … … …

Time Location Activity User State Object State Digital State

Context Scene

Context Scene

Context Scene

…

…

…

Evening Livingroom-sofa Eating Off WeekdayNo No Sunny… … …Context Scene

Context History

Runtime

On

Figure 3: The framework of authoring CAP using Fast-Forward Reality. (a) A user’s everyday contexts are recorded as the
context history, which contains a series of context scenes where each one is a collection of concurrently occurring context
instances of corresponding context factors that can be detected in the environment. (b) In a user-authored CAP, the ‘trigger’
contains multiple context instances from the same or different context factors, while the ‘action’ is a context instance of a smart
object that reflects the functional state (e.g., ‘TV is on’). (c) During deployment, for all the context factors included in the CAP,
when the specified context instances are present in the real-time context scene, the ‘action’ is triggered.

components of a CAP, and (3) upon deployment, how does our sys-
tem determine when should the action of the CAP be executed. As
discussed in Section 2, technical solutions have been developed to
detect and identify increasing types of contexts that were proposed
in early elicitation works [1, 26, 77]. We adopt previously proposed
taxonomy of contexts [1, 24] and assume integration with modern
AI modules to categorize the contexts we aim to leverage into the
following context factors:

• Time represents the time of a day, which is commonly used in
CAPs: ‘turn on all lights in the ‘evening’. It is the most straight-
forward context that can be retrieved.

• Location of a user serves as a critical factor in a CAP (e.g., ‘turn
on the A/C when I enter the living room’). We assume that the
user locations can be detected by external sensors [68, 95] or
through computer vision with advanced head-mounted devices
[61] in real-time.

• Activity belongs to the status(activity) category [24], represent-
ing both general activities and interactions with objects that
are detectable via software [97] and hardware [106] based ac-
tivity detection modules. Considering the structure of currently
available activity detection networks and benchmarking datasets
[14, 20, 32], we assume activities will be detected as discrete labels
(e.g., eating, reading, etc.) given continuous sliding window time
series of human skeleton or hand-object interaction as inputs.

• User state also belongs to the status(activity) category [24]. It
represents the spatial-insensitive status of a user. Typical ex-
amples include: ‘being alone’, ‘in a meeting’, and ‘feeling tired’.
These contexts can be detected via AI networks or inferred from
other contexts (e.g., how many cups of coffee have been drunk).
Typically, the outputs are discrete nominal labels.

• Object state represents status of objects in the environment. For
a smart object such as a coffee machine or a smart pill bottle, its
physical states (e.g., not enoughwater, howmany pills left) can be
identified but not digitally manipulated. For other smart and IoT

devices, their active status can be altered by a CAP (e.g., ‘turn on
the TV’). Using IoT communication protocols such as Resource
Description Framework [22], and hardware-based localization
algorithms such as ultra-wideband [41], such discrete contexts
can be detected during runtime.

• Digital state is related to identity and represents general but
unique environmental information provided in general digital
devices such as temperature and weather. Similar to the Time,
these contexts can also be easily retrieved from the HMD.

For each type of context factor, we define context instances
as the nominal values (labels) that can be assigned to them. For
instance, the location factor can either include object-oriented con-
text instances such as ‘living room sofa’ and ‘dining table’, or non-
interpretable anchor IDs that are marked by AR devices. Activity
can include labels from activity detection models (e.g., ‘sleeping’,
‘walking’). Boolean ‘yes’ and ‘no’ states are used to indicate object
states (‘music player is on’). At any moment in a user’s daily life,
we define a context scene as a combination of context instances,
where each context instance belongs to one available context factor
(Figure 3a). Whenever one of the context factors changes, a new
context scene is registered, and all the recorded context scenes form
the user’s personal context history (Figure 3a).

To enable end-user CAP authoring, we adopt the widely-used
trigger-action programming paradigm [84]. Here, a user first defines
an ‘action’ to manipulate a target object (e.g., TV is on), and then de-
fines a ‘trigger’ by including multiple context factors (e.g., time and
location), and for each context factor, selecting the context instances
(e.g., morning and afternoon) (Figure 3b). During runtime, when
a CAP is deployed, for all included context factors, if one context
instance is present in the current context scene, the corresponding
smart function (‘action’) is executed (Figure 3c).

Fast-Forward Reality CHI ’24, May 11–16, 2024, Honolulu, HI, USA

Algorithm Input Correlation Assessment Stage Concurrency Assessment Stage

Start with a
context factor
and an empty

test case

Add the context instance with the
lowest concurrency count to the

test case

Add the context instance with the
highest concurrency count to the

test case

Algorithm Output

For the other context
factors included in
the CAP, pick one

context instance, add
it to the test case

NoYes

No

Yes

Yes End with a
test case

Iterate to the next context factor

No

The CAP already includes
this context factor?

Uncertainty coefficient
> threshold?

Uncertainty coefficient
> threshold?

Figure 4: Test case generation algorithm. For each context factor, the algorithm starts with an empty test case. In the correlation
assessment stage, we investigate whether the processing context factor holds a high uncertainty coefficient value with the
target action, and whether it is already selected into the CAP. Depending on the conditions, the algorithm then processes the
concurrency assessment stage to select the context instances into the test case. In one specific condition, the system will skip this
process and directly iterate to the next context factor, while in other conditions, the algorithm outputs a test case and starts to
process the next context factor.

3.4 Test Case Generation in Unit Testing
After a user has created an initial CAP, the main purpose of the
unit test stage is to help reveal potential errors (the under-specified
and over-specified scenarios discussed before), which are caused
by the inaccurate selection of the contexts of interest following the
framework introduced before. Note that resolving runtime errors of
AI modules is out of this work’s scope. Typically, most of the prior
CAP authoring [25, 26, 92] and validation [55, 87, 103] systems
assume the detection of the contexts is reliable and robust. For
instance, an alarm CAP can be validated by changing a simulated
time. However, it is impossible to test and refine the CAP when the
time itself is wrong. Thus, the test case generation algorithm we
propose in this paper only aims to resolve the inaccuracies in the
user-authored CAPs, rather than the unpredictable AI errors. Yet,
we will discuss the potential extension in the Discussion section.

With the above CAP authoring framework, we follow the unit
testing approach and develop a computational approach to generate
diverse test cases that help reveal potential inaccuracies in a CAP.
A test case consists of a set of context instances available in the
environment. Our test case generation algorithm addresses the
design goals of personalization, diversification, and brevity (defined
in Section 3.1) through three key strategies:
• Strategy A - Correlation: Investigate which context factors
largely affect the execution of the current CAP and include appro-
priate context instances into test cases. By doing so, when visiting
the test case, the user can notice the scenarios that are highly
associated with their personal preferences.

• Strategy B - Intention: Add one (and only one) context instance
for each context factor that is already in the CAP so that the test
case is closely related to the user’s original idea and realistically
reflect a real-world condition where only one context instance of
a context factor can happen at one moment.

• Strategy C - Simplification: Exclude irrelevant context factors
to avoid distracting the user so that they can focus on the context
factors likely to cause errors.
To implement Strategy A, as we assume that users will main-

tain some routines during everyday life, we compute uncertainty
coefficient [79] to identify context factors. Specifically, this is a
conditional information entropy-based approach to asymmetrically

reveal that in the presence of a particular context instance, what is
the probability that another context instance occurs. For instance, a
user may watch TV at different times of the day, but is always eating
and not using the phone while doing so. In this case, the uncertainty
coefficient between the ‘TV state’ and ‘time’ is low, while ‘activity’
is high. To apply this in our system, once the user selects a target
action, we loop over every detectable context factor, and (1) retrieve
all past context instances of both the target action and the current
processing context factor from the user’s context history and (2)
calculate the uncertainty coefficient between the two lists using the
𝑡ℎ𝑒𝑖𝑙𝑠_𝑢 function1. Further, since these coefficients only reflect the
context factor level correlations, we also calculate the concurrency
count for each context instance within the context factor : (1) fetch
all context scenes where the target action context instance happened
and (2) construct a dictionary of all the context factors that saves
the counts of context instances that happen in these context scenes
using the 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 function2. These concurrency counts will help
the system determine which context instances to include in the test
case after deciding the context factor.

Figure 4 illustrates the test case generation algorithm. Given the
target action and the initial context instances, together with the pre-
calculated uncertainty coefficients and concurrency counts, we loop
over every context factor that is available in the current environment
to process the algorithm. First, in the correlation assessment stage,
we examine (1) whether the context factor is already included in
the CAP and (2) whether the uncertainty coefficient of the currently
processing context factor is greater than an empirically set threshold
(we will explain it in Implementation section). Four conditions
will be available and we only process 3 of them in the following
concurrency assessment stage.
(1) If a context factor shows a high correlation with the target

action, however, is not included in the current CAP, we initiate
a new test case and add the context instance that most frequently
happens concurrently with the action in the test case. Typically,
this case helps eliminate under-specified mistakes. For instance,
a user always does specific activities while ‘TV is on’, leading to
a high uncertainty coefficient. However, the user has not included

1https://github.com/shakedzy/dython/blob/master/dython/nominal.py
2https://docs.python.org/3/library/collections.html#collections.Counter

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Qian, et al.

any activity in the CAP. So, the system includes the activity
that the user mostly does when watching TV in the test case to
remind the user of this critical factor in the CAP.

(2) If a context factor shows a low correlation with the target action,
however, is already included in the current CAP, we initiate a
new test case and add the context instance that rarely happens
together with the action into the test case. Consider the same
user, who would watch TV at different times, adds ‘evening’
into the CAP. The system warns the user about this potentially
over-specified error by including ‘time’ when the user rarely
watches TV in the test case.

(3) If a context factor shows a high correlation with the target
action, and is included in the current CAP, we initiate a new test
case if there is a context instance that happens more frequently.
This condition also targets over-specified CAPs. For example,
consider location holds a high uncertainty coefficient and the
user has already included the dining table in the CAP. However,
concurrency counts indicate that the user watches TV often
while on the ‘sofa’. Our system includes ‘sofa’ into the test case
to nudge the user to generalize this context factor in the CAP.

(4) Note that the last condition (i.e., a context factor with low uncer-
tainty coefficient that is not included in the CAP) will not lead
to any test cases because we assume that this decision made by
the user already meets their personal preferences.

Next, to realize Strategy B, for each CAP-involved context factor
that is not included in the test case, the system randomly picks one
context instance, such that the generated test case is consistent with
what the user just authored. After iterating over all the 𝑁 context
factors, the algorithm generates𝑀 < 𝑁 test cases, where𝑀 depends
on the previously mentioned threshold. Meanwhile, if the current
CAP involves 𝑛 context factors, each test case involves𝑚 ∈ {𝑛, 𝑛+1}
context instances. Finally, Strategy C is satisfied by composing test
cases of only the most critical context instances that may affect the
user’s decision and omitting low-priority instances. The user can
focus on testing out the suggested test cases without needing to pay
attention to irrelevant context factors. By adopting this principled
approach, the system can generate multiple test cases and present
it to the user.

3.5 XR Authoring Interface
Our XR authoring environment ensures that Fast-Forward Reality
follows the design goals (subsection 3.1 of providing interpretability
during testing and enabling seamlessness of authoring and refine-
ment. In our system, a menu is rendered on the user’s non-dominant
hand encapsulating all buttons for controlling the system (Figure
5a). The ‘edit’ and ‘edit next’ buttons allow for editing one of the
existing CAPs. The ‘new’ button initiates the authoring of a new
CAP. The ‘start validation’ button is used for switching between
authoring and validation. Finally, the ‘save’ and ‘delete’ buttons
allow users to store or remove a CAP.

When the user starts authoring a CAP, available context instances
are displayed in the XR authoring environment (Figure 5c-1). Users
can interact with these elements to include them in the authored
CAP. Based on the types of context factors, we place spatial-sensitive
context instances directly in the XR environment. Specifically, the lo-
cation and activity are illustrated using avatars with different poses

(Figure 5c-2); object states are represented using XR icons placed
next to the corresponding objects (Figure 5c-3); spatially-insensitive
contexts (time, digital state, and user state) are displayed on the
user’s non-dominant hand with 2D icons (Figure 5c-4). The user can
select the checkbox above each context instance to add/remove it
to/from the CAP. Meanwhile, each context instance is color-coded3
to indicate different selection states: we use blue to represent un-
selected context instances, pink for those included in the CAP, and
red for those in a test case. Lastly, a panel is displayed on the user’s
non-dominant hand (Figure 5b) to illustrate the context instances
and activities included in the current CAP.

Test cases are generated automatically and made available to
the user. When the user starts validation, a test case is visualized
within the same environment to enable quick interpretation. Users
can observe a test case as a ‘fast-forward’ simulation that reveals
the consequences of a particular context scenario, thus providing
them with feedforward. Typically, as illustrated in Section 3.4 and
Figure 3, Fast-Forward Reality compares the real-time detection
of the AI modules with the user-authored CAP, and visualizes the
corresponding output in the XR environment. For instance, if all
the conditions are met for a TV controller, the physical TV will be
turned on in the environment. Since authoring and testing take
place within the same environment, the user can immediately start
refining their CAP by modifying the context instances as needed.
Note that to reduce users’ visual and mental loads, all the XR UIs are
only accessible to users during the author-test-refine flow. When
users return to everyday life, Fast-Forward Reality will hide all XR
visualizations but keep running at the backend.

3.6 Implementation
We use Meta Quest 2 [59] as the target platform for developing the
authoring interface, and implemented the system using Unity3D
(2020.3.16f1) [82]. Interactions with the interface are currently sup-
ported via handheld controllers; however, it is trivial to switch to
free-hand interactions supported by Quest 2 and other XR devices
[61]. To determine a proper threshold value used in the test case
generation algorithm, and a suitable number of context scenes to
capture in the context history, we conducted preliminary tests us-
ing a context history collection tool, which is described in the next
section. Typically, we generated 5, 10, 15, 20 context factors that may
be relevant to a home environment. For each case, we collected
10, 20, ..., 50 context scenes. During data collection, we followed an
abstract rule to control smart functions and collected diverse con-
text scenes with a small amount of noise. Then, we calculated the
uncertainty coefficients of the smart function concerning all avail-
able context factors. We empirically set the correlation value to be
0.5, then set the minimum number of context scenes collected in
the context history to be 10 times the number of available context
factors in the environment. By doing so, we ensure that the num-
ber of context factors that are higher than the threshold will be
approximately less than 5.

4 USER STUDY
To evaluate whether the design of Fast-Forward Reality fulfills our
design goals (Section 3.1), we conducted a systematic user study. In
3Additional textual labels can be included to ensure visual accessibility.

Fast-Forward Reality CHI ’24, May 11–16, 2024, Honolulu, HI, USA

Livingroom TV On

Location
Studyroom

Table

Time

InWorkingTime

Evening Afternoon

Yes

Action

Trigger

Time

Spatial Insensitive Contexts

Morning Noon After
noon

Evening

Start
Validation

1/4

1/1

(a) (b)

(c-2)

(c-4) (c-3)(c-1)

Figure 5: The XR-based authoring interface of Fast-Forward Reality. (a) The main menu rendered on a user’s non-dominant
hand enables users to ‘edit’ existing CAPs, ’add’ a new CAP and author it, ‘start validation’ of unit test cases, ‘delete’, and ‘save’
the CAP. (b) An authoring panel displayed on the user’s non-dominant hand indicates the action and triggers in the current
CAP. (c-1) The immersive XR authoring environment. (c-2) Location and activity context instances are represented using avatars
with different poses. (c-3) Spatial states are placed in situ, next to corresponding smart objects. (c-4) The digital state and user
state are rendered on the user’s hand. All context instances are color-coded to represent different conditions where blue color
indicates that the context instance is not selected, pink represents that it is included in the current CAP, and red represents that
it is included in the current test case.

this work, we propose an XR-based workflow that addresses the
difficulties of validating complicated CAPs that cannot be straight-
forwardly solved by traditional developer-oriented unit testing
systems. In specific, since end-users do not have the expertise to
design high-quality test cases while in the local environments, we
design a computational algorithm that leverages the users’ personal
history to extract diverse test cases. Moreover, we adopt the immer-
siveness enabled by the XR technique to show the test cases via
in-situ virtual content and support users to intuitively understand
each test case by enacting each test case in XR via in-situ simulation.
Therefore, the goals of this study include: (1) investigating whether
the test cases generated by the system effectively meet users’ needs
in identifying potential inaccuracies of the CAPs, and (2) evaluating
whether the XR-based environment helps users easily understand
the test cases and identify potential improvements of the CAPs.
Note that the main research scope of this work is not to compare
whether our system outperforms prior approaches, instead, we aim
to illustrate that the system can succeed in solving the research
difficulties when dramatically increased spatial-sensitive contexts
can be involved in CAP authoring.

4.1 Study Setup
For the study, we designed a virtual one-bedroom apartment (Figure
6a) as the home environment to conduct the user study. We also
developed an interactive tool (Figure 6b) to enable end-users to elicit
personal context history that is appropriate to the virtual home.

4.1.1 Context History Collection Tool. Our authoring process relies
on the availability of a user’s context history, containing context
scenes that have taken place in the past. Given the constraints of
our controlled study and privacy concerns, collecting participants’
real context history was infeasible. To circumvent this issue, we
developed a data collection tool where participants could quickly
explicate their everyday activities to create their context history in
the provided virtual home. We asked participants to specify context
instances temporally by prompting them to imagine their daily
routines. Note that one of the key observations that has sparkedHCI

interest and research on developing CAPs is that humans do follow
some routines and have personalized preferences in their everyday
lives. Thus, we aimed to provide an environment that resembled
each user’s personal living environment and asked them not to
deliberately create random non-representative context histories,
but to follow some general personal routines.

As shown in Figure 6b, the data collection interface is separated
into four parts. In the top left corner of the UI, a ‘new sequence’
button allows users to create a new ‘day’ of living in the virtual
apartment, while a clock illustrates the time. After pressing the
‘new sequence’ button, a user can select the two arrows next to
the clock to change the time (Figure 6c-2); the numeric time is
encoded into nominal values (e.g., evening). In the center, the floor
plan (top-view) of the virtual apartment is displayed (Figure 6c-
1). All available location context instances are represented with
selectable blue circular nodes. By selecting a node, the available
context instances of the two types of context factors, activity, and
object state are shown as lists. The participant can click an activity
or an object state to indicate what will happen at the specified
time. Further, available user states are listed below the clock for the
user to select. All selectable context instance nodes are illustrated
in Figure 6c-2; a textual description of the context instance appears
when the cursor hovers over the corresponding node. User-specified
context instances are visualized along a timeline (Figure 6c-3). The
participant can click a block/dot to delete the corresponding context
instance. After specifying all context instances at a specified time,
the participant can change the time and repeat all operations until
the ‘current day’ is finished.

Once the user presses the ‘save sequence’ button, for every time-
step when the user specifies at least one context instance, a new
context scene is created and stored. If the user does not specify any
context instance of particular context factors, they are set to default
values in the context scene. By consecutively eliciting multiple days,
the user successfully provides a context history.

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Qian, et al.

(a)

Location

Activity

Time

Object state

On Digital/User stateOff

(c-3)(c-1)

(c-2)

(b)

Spatial-
insensitive

Contexts

Activity

Object
States

Figure 6: (a) The virtual environment used for the user
study. (b) The context history collection tool. The top left
corner below the ‘new/save sequence’ button contains spatial-
insensitive contexts, time and user-specific digital/user states
(e.g., ‘is working’, ‘feel tired’, ‘consume toomany coffees’, and
‘not enough water in the coffee machine’) (c-1) The floor plan
of the target environment. By clicking each blue dot, pre-
designated spatial-sensitive context instances such as object
states and activities can be toggled together with their lo-
cations (e.g., ‘coffee machine is on/off’, ‘stay’, ‘cooking’, and
‘eating’.) (c-2) The available context instances that are visual-
ized in different icons according to the context factors. Typi-
cally, location is spatially overlaid on the floor plan, while
available activities and object states are displayed as lists
after selecting the location. (c-3) The timeline indicating all
the recorded context instances. Explanation of the context
instance will appear when hovering on the icon. One can
delete a context instance by clicking the block/dot.

4.2 Study Method
One of the major research questions we aim to investigate is the
efficacy of Fast-Forward Reality and whether validation and re-
finement at author-time can improve the accuracy of CAPs before
deployment. To inform our system design, we derived a set of five
design goals. We conducted a within-subject comparative study
to assess whether the test case generation algorithm can gener-
ate effective tests that fulfill the requirements of the first design
goals 1–3 (personalization, diversification, brevity). Design goals
4–5 (interpretability, seamlessness) were assessed via a subjective
questionnaire and interview.

Since the main goal was to prove the effectiveness of our test case
generation algorithm, we designed a baseline system that adopted
the same XR authoring interface, while turning off the test case
generation capability. In specific, we provided the users with the
same XR UIs as illustrated in Section 3.5. The only controlled factor
was that during the test and refine phases, the users could manually
toggle different context instances and spatial movements to validate
their CAPs. Note that, the users had full freedom to stop testing if

they felt the authored CAPwas already precise enough. In the study,
each participant was asked to author two CAPs using Fast-Forward
Reality and the baseline system respectively in a virtual apartment
(Figure 6a).

Participants: 12 participants were invited to the user study (8
males, 3 females, and 1 non-binary; mean age=27.83, SD=3.16). No
specific background or experience was required during the recruit-
ment. 9 participants had used smart objects (e.g., Nest Thermostats
and Philips Hue), and 3 out of these 9 had authored everyday au-
tomation (e.g., Alexa) at least once. 11 participants had previously
used XR applications (e.g., Pokemon Go and Beat Saber), while 5
users had developed XR applications. None of the participants had
seen or used our system before the study.

Procedure: In the author-test-refine workflow, users do not
complete the authoring in one shot, but continue modifying their
CAPs until they feel satisfied with all the system-provided test
cases. Thus, the most effective way to evaluate our system is to
investigate the performance of the CAPs validated using the test
cases. Overall, each user was asked to use Fast-Forward Reality
and the baseline system to author 2 CAPs: (1) a CAP that controls
a smart TV in the living room of the virtual apartment and (2) a
CAP that controls a smart music player that can play music in the
entire apartment. To provide the users with a more realistic feeling
of living in the virtual apartment, we sent a pre-study survey to the
users before they came, which included (1) the study background,
(2) the virtual home environment floor plan (Figure 6a), (3) the 2
target smart functions, and (4) the available types of context factors.
Then, the survey asked the users what context factors and context
instances would be considered when they wanted to control the
two smart functions. We then prepared the virtual apartment for
both the 2D tool and the XR authoring environment accordingly.
Each user signed a consent form stating that no reimbursement
was provided and the user preserved the right to terminate the
study whenever they wanted. After a user arrived, the researcher
introduced the background and definition of CAPs, and the user
collected the context history using the 2D interface. Then, the user
entered the XR authoring environment to complete the 2 authoring
tasks using the 2 systems while considering data counterbalancing
among all the users. During each task, we recorded the final au-
thored CAP, completion time, number of iterations of the CAP (if a
user added more than one context instance at one time, it was still
marked as one iteration), and number of test cases created/validated.
After each task, the user was asked to complete a Likert-type sur-
vey towards the feedback on the validation process. At the end of
the study, the user completed another Likert-type questionnaire
regarding the XR authoring environment and the entire usage expe-
rience, together with a Standard Usability Scale survey. Meanwhile,
a conversation-like interview was conducted to collect the user’s
subjective feedback on the system.

4.3 Study Results
Based on the pre-study survey results, we included 8 types of context
factors in the virtual apartment. Time, location, activity, TV state,
and Music player state were available for all the users, while ‘is
working’, ‘is alone’, ‘feel tired’, ‘weather’, ‘having a meeting’, and
‘playing video games’ were provided for different users based on

Fast-Forward Reality CHI ’24, May 11–16, 2024, Honolulu, HI, USA

their survey responses. Meanwhile, the available activities also
varied (e.g., ‘doing exercise’ and ‘smoking’ were provided for some
users). During the collection of the context history, we collected
M=81.9 (SD=10.96) context scenes, and selected 75% of the data for
the test case generation algorithm and 25% for accuracy evaluation
discussed later.

We first report the analysis of the users’ operations during the
authoring processes. Note that these statistics and observations do
not explicitly address our design goals, but provide implications of
the usefulness of our system. Overall, the users finished each task
using the baseline system with 5.0 (SD=1.86) minutes, while 6.25
(SD=1.82) minutes using Fast-Forward Reality. Within the entire
authoring time, 2.25 (SD=1.60) minutes were spent for manually
validating the CAPs, and using our system, 3.58 (SD=0.90) min-
utes were taken. On average, the users generated 1.25 (SD=1.06)
test cases. We observed that using the baseline system, most users
simply checked the CAP by selecting the context instances they
added during the validation stage. Using Fast-Forward Reality, 5.25
(SD=1.66) test cases were evaluated by the users. Note that although
approximately 4 times more test cases were viewed, validation time
was not greatly impacted. This can be attributed to the rationale
that with the baseline system, users spent more time thinking about
what context instances could be used to validate the CAPs. Further-
more, the users conducted 1.0 (SD=1.28) iterations of the CAPs after
the manual validation to add more constraints to the CAPs. We also
observed that the users tried to make the CAPs more accurate by
adding more context instances even before the validation. “I used
IFTTT before, this was how I created a rule by just adding those impor-
tant factors. It’s always better to add more constraints to make it more
accurate, right?” (P6) In contrast, with the help of our system, 3.92
(SD=1.44) iterations were performed. Typically, we observed not
only the ‘addition’ of the context instances, but also the ‘removal’
of the context factors after visiting some test cases. While these gen-
eralized observations partially substantiate our proposed approach,
in the following analysis, we further investigated the accuracy of
the CAPs and the users’ subjective feedback systematically.

4.3.1 Test case Generation Evaluation. We first report the qualita-
tive feedback on the test case generation algorithm from the 7-point
Likert-type questionnaire. Typically, the users were asked to an-
swer the same set of questions after experiencing Fast-Forward
Reality and the baseline system respectively. The questions and
results are shown in Figure 7a-1. Besides the general analysis, we
conducted a Wilcoxon Signed-Rank Test to investigate whether the
feedback on the test cases was significantly different between the
two systems. This test approach specifically targeted within-subject
non-parametric data while no normality test was needed.

As noted in the personalization design goal, the test cases should
be closely related to the users’ everyday activities (Q1) and the
currently authoring CAPs (Q2). As shown in the results, our system
was positively welcomed by the users in the relevance to the daily
actions of the test cases (M=5.4, SD=0.79), and showed a significant
difference (Z=-2.8, p=0.004) compared with the baseline system
(M=3.3, SD=1.44). “One [test case] where I ate food in the study
room was definitely what I would do. It was one of my personal
preferences.” (P4) Regarding the relevance to the CAP, our system
received a more decent rating (M=5.5, SD=0.80), compared with

the baseline system (M=2.8, SD=1.29). A significant difference was
identified in this question (Z=-3.1, p=0.002). “Using the [baseline
system], I had no idea of how to pick more [context instance]s since
the only idea I had was already added in the policy. But the [Fast-
Forward Reality] could give me some good examples, such as ‘having
a meeting’, and ‘working on my laptop in the music player task’,
which was definitely what I would care about.” (P3) Another key
motivation when generating test cases is whether they could help
users realize potential mistakes in the CAPs (the diversification and
brevity design goals). The users highly appreciated that the test cases
could contribute to the refinement against the CAPs (Q3: M=6.1,
SD=0.90, and Q4: M=5.9, SD=0.79). These ratings were significantly
higher than the baseline system (Q3: M=2.4, SD=1.00 and Q4: M=2.3,
SD=1.23): for Q3, Z=-3.1, p=0.002, and for Q4, Z=-3.1, p=0.002. “I
liked the idea of showing some other potential conditions of one trigger.
For the music player, when I first authored it, I only added ‘evening’
because I was thinking about eating dinner, but [Fast-Forward Reality]
also remindedme of cooking in themorning, whichwould also happen.”
(P11) “The system not only informed me which factor I should consider,
but I could also directly use that case in my policy, such as it suggested
me adding not working and not listening to music into the TV policy.”
(P1) “What made me surprised was that your system led me to think
more about my policy. When I saw that eating at the dining table case,
I started to think maybe I should add doing workouts in the living
room to the TV policy as well.” (P7) Last but not least, the users felt
more confident after they validated the CAPs using Fast-Forward
Reality (Q5: M=5.8, SD=1.06), and the baseline system received a
significantly lower rating (M=2.7, SD=0.98) with Z=-3.0, p=0.003.
“Actually, only after I used your system did I realize how bad it was
when I created that music player rule using the [baseline system].”
(P2)

Besides the users’ subjective feelings, we investigated whether
the performance of the CAPs was improved after the validation.
Given a user-authored CAP, we used the rest of the context his-
tory as the ground-truths to calculate: (1) precision = 𝑇𝑃/(𝑇𝑃 +
𝐹𝑃), (2) recall = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁), and (3) F-score = 2 · 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ·
𝑟𝑒𝑐𝑎𝑙𝑙/(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙), where 𝑇𝑃 represents ‘true-positive’ in-
dicating the target action is expected to be executed while the
CAP successfully triggers it; 𝑇𝑁 represents ‘true-negative’ where
the CAP accurately stays silent when the target action should
not be triggered; 𝐹𝑃 (false-positive) means the CAP mistakenly
trigger the target action but the user does not need it; 𝐹𝑁 (false-
negative) means the action should be executed, but the CAP does
not work. We also conducted a paired t-test after the data passed
the normality test for the significance analysis (Precision: |Kurto-
sis|=0.88<2.0 and |Skewness|=0.36<2.0; Recall: |Kurtosis|=0.88<2.0
and |Skewness|=0.36<2.0; F-score: |Kurtosis|=0.88<2.0 and |Skew-
ness|=0.36<2.0). The results are shown in Figure 7a-2.

Using our system, the precision of the CAPs reached 90.6%
(SD=0.01), which was significantly higher than that of using the
baseline system (70.5%, SD=0.08): t(11)=-2.51, p<0.05. Similarly, the
recall was significantly increased from 32.1% (SD=0.05) to 83.3%
(SD=0.03) with t(11)=-7.50, p<0.005. Further, the overall F-score was
improved from 38.2% (SD=0.02) to 85.4% (SD=0.01) with t(11)=-10.10,
p<0.005. The statistical analysis indicated that by using our system,
the users could author more accurate CAPs via the additional valida-
tion stage. Meanwhile, we noticed that using our system, the recall

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Qian, et al.

2.67

2.33

2.42

2.75

3.33

5.75

5.92

6.08

5.50

5.42

0.71 0.32 0.380.91 0.83 0.85
6.08

6.17

5.83

6.00

* *100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0

Baseline Fast-Forward Reality(a-1) (a-2)

0 1 2 3 4 5 6 7

*
*

*
*

Q1: The test cases were closely
related to what I would do every day.

Q2: The test cases were closely
related to what I was trying to author.

Q3: The test cases helped me
realize inaccuracies in the CAPs.

Q4: After visiting the test cases, I was
clear how to refine the CAPs.

Q5: I felt confident in the CAPs
after the validation.

Precision Recall F Score

* * Q1: I could rapidly understand the
contexts that were represented

using the in-situ placed icons.

Q2: It was straightforward to edit
CAPs by directly (de)selecting the

in-situ placed icons.

Q3: It was intuitive to validate the
CAPs right inside the environment

that I would use them.

Q4: I felt being immersed in
different contexts when

validating the CAPs.

(b) 0 1 2 3 4 5 6 7

Figure 7: (a-1) The survey results of the quality of the test cases generated by the users using the baseline system and by
Fast-Forward Reality. (a-2) The accuracy results of the CAPs authored by the users using the two systems. (b) The subjective
feedback on the XR authoring environment.

and F-score were greatly increased if compared with the precision.
According to the definition of precision and recall, the numbers of
the FN reduced to a greater extent than that of the FP when using
Fast-Forward Reality to validate the CAPs. One main reason was
that when using the baseline system, no assistance was provided
for the validation, thus many users added additional constraints
that made the CAPs more over-specified. On the other hand, when
using our system, we observed that after visiting some test cases,
the users not only added more context instances to the CAPs, but
also removed some context factors that were originally included.
“When using that [baseline system], there was only one scenario in my
mind, so I just created that specific CAP When I used [Fast-Forward
Reality], those suggestions let me realize the CAP was too constrained.”
(P3) Another important observation was that although the over-
all accuracy was significantly increased, the CAPs rarely reached
100% accuracy. It was because in everyday life, a person could not
strictly follow one single CAP as the routine. There always exist
scenarios that have never happened before. We will discuss it in
the Limitation section in terms of how to address this issue.

4.3.2 XR Authoring Environment Evaluation. To address the design
goals 4–5 (interpretability and seamlessness), Fast-Forward Reality
leverages XR to build an immersive authoring environment for end-
users to experience test cases and iterate the CAPs. Using a 7-point
Likert-type survey, we evaluated whether the users welcomed the
features of the authoring interface. The results are illustrated in
Figure 7b.

We received complimentary feedback on the feature allowing
users to try out the test cases while being immersed in the XR en-
vironment (M=6.1, SD=0.67). “Because I’ll use these policies in the
physical environment, it’s a good idea to let me try out my [CAPs]
in the same environment. When I looked at those virtual icons right
above the TV and sofa, I could easily understand what they meant.”
(P4)Meanwhile, all the users agreed that it was necessary to validate
the CAPs before the real-world deployment (M=6.2, SD=1.19). “I felt
much more confident about my CAP when I could see the TV was on
after I sat on the sofa. That instant feedback was realistic.” (P5) Such
comments were aligned with the findings in prior works in feedfor-
ward simulation [27, 86], where users tend to visualize the realistic
outcomes instead of descriptions to gain trust against the digital
applications. Placing virtual icons that represent the corresponding
affordance and functionalities of the smart objects received positive

feedback (M=6.0, SD=0.60). “For those spatial contexts, it’s better
to show them in the environment. Otherwise, if I have many smart
lights, it’s difficult to understand which light I’m referring to using
pure texts.” (P2) Users also commented on the comparison between
in-situ icons and 2D icons for spatial-insensitive contexts. “I wonder
if those icons can also be attached to the corresponding objects. For
example, the ‘having-meeting’ context can be attached to my calendar.
Then, I can fully focus on the physical world when I do the test.” (P9)
In addition, the immersive operations provided by our system were
also highly accepted by the users (M=5.8, SD=0.83). “Because the
icons were inside the environment, I didn’t have to switch between
different platforms to create my CAPs.” (P10) Several users who had
programming experience (P11, P7, and P1) also pointed out that our
system was aligned with the trend of spatial programming [92, 105]
for enabling non-experts to join the application development. “If
the program will be used in 3D, it is more intuitive to create and test
it in 3D as well. It is a promising way to attract people who do not
have coding expertise to create such CAPs in the future.” (P11) Last
but not least, a decent Standard Usability Scale score with M=86.0
and SD=6.77 further proved the overall usability of Fast-Forward
Reality.

4.4 Discussion
Fast-Forward Reality has been proven effective in facilitating non-
expert users to author error-free CAPs via properly generated test
cases in XR. Given the current scope of the CAP authoring, we
discuss more insights and concerns we have distilled from the
design process and user study results that inspire future research
along the novel author-test-refine workflow of the CAP authoring
area.

4.4.1 Scalability of the system and validated CAPs. In the current
implementation, we illustrate our system in a virtual environment
where spatial-sensitive context instances and corresponding UIs are
placed in situ. On one hand, our system could easily adapt to the
corresponding AR environment. Specifically, when introducing the
framework of context awareness in Section 3.3, we clarified that
the scope of this paper lies in the assumption that users live in
AI-powered smart environments so that all types of the context
factors could technically be registered and detected in the physical
environment. While the registration is out of this paper’s scope,
prior works [18, 41] have addressed this need. Hence, for all context

Fast-Forward Reality CHI ’24, May 11–16, 2024, Honolulu, HI, USA

instances and UI icons that require in-situ visualization (e.g., an
activity happening at a sofa), Fast-Forward Reality could display
them at the corresponding physical locations. Meanwhile, object
states and digital states are also available to display in the physical
environment or anchored to a fixed place (e.g., coffee maker status,
TV status, calendar events).

Moreover, we would discuss the possibility of deploying one
CAP across different environments, which has been addressed by
prior authoring systems [42, 72, 100]. Following the current context
factor framework, one straightforward answer is that the CAP could
be correctly run as long as all the involving context instances are
present in the new environment. Prior work [72] enables designers
to validate the AR application performance by providing scenes
where corresponding spatial and semantic associations are absent.
Such an idea could be leveraged in the test case generation process
by showcasing scenarios when each context instance is not available.
However, the participants raised concerns when the researchers
asked about more scenarios they would use the authored CAPs.
“Actually, I was thinking of using the music CAP when I went back to
my parent’s home as well. But I realized it would be a lot different. I
may create a different CAP.” (P6) “It depends on my preference. Some
CAPs are just for home, I don’t even want to turn it on somewhere else.
But some CAPs, like more general ones, I would expect that to work all
the time.” (P12) As CAPs are highly associated with humans’ daily
routines, any addition and deletion of context instances represent
the specific intention. Therefore, how to balance between scalabil-
ity and personalization for authoring CAPs still requires further
studies.

4.4.2 Mixed errors beyond CAP authoring. The main contributions
of this work lie in the validation workflow and the algorithm to
generate high-quality unit test cases that help identify and elimi-
nate over/under specified errors. However, while researchers in the
AI domain have been continuously working on improving the AI
model performance and robustness, detection errors are inevitable
under varied scenarios [47], and this issue has also been explored
by other context-aware system research [50, 100]. In this paper, the
user study has proven that Fast-Forward Reality could effectively
avoid user-caused errors during CAP definition. It was conducted in
a virtual environment and the accuracy of the CAPs was calculated
by running the CAPs in the user-collected context scenes where
all the context instances were assumed to be correctly detected.
Yet, we recognize the importance of bridging the gap between the
validation process and the imperfect performance of the current
AI technologies. Users would lose trust in our system if a CAP
performs wrongly due to an object detection mistake even though
the logic of the CAP is properly validated using our system. In-
trinsically, the AI errors do not belong to the logic of any CAP.
Thus, it is impractical to directly introduce such uncertainty into
the validation workflow, as users could refine nothing logically on
the CAP even though they know it may fail due to AI mistakes.
However, we propose two potential methods to mitigate the mixed
error issue for our system and future CAP authoring systems. First,
sensing errors could happen during the context history collection,
which reduces the correctness of the test case generation algorithm.
We could enable users to eliminate wrong detection data so that the
generated test cases are entirely reliable. Inspired by CAPturAR [92],

we could allow users to revisit the past activities and contexts with
XR visualizations, then either delete or correct the wrong context
history. Further, to deal with the sensing errors during execution,
we notice that Explainable AI (XAI) has become a popular topic
that allows for explaining AI errors to end-users to increase user
trust in AI [5]. We envision an integration between our system and
an XAI agent that can pop up the list of detected contexts when
a CAP does not perform as expected to inform the user that such
a mistake either comes from the CAP authoring or AI detection
mistakes [4, 50].

Another uncertainty resides in the users’ daily behaviors. A per-
son never strictly follows a routine in complicated everyday life.
Although our system improved the CAP accuracy via validation,
the F-score of the CAPs could never reach 100%. One way to fur-
ther improve the accuracy could be authoring multiple CAPs and
adopting XAI approaches as discussed previously. Additionally, we
envision the user wearing an advanced XR-HMD all the time for the
detection of the contexts. Thus, the specific context scene that causes
the mistake could be either recorded as a corner case and treated
separately in the future or used for improving the AI-based models.
We could also improve the test case generation algorithm by tak-
ing into consideration these context scenes that cause deployment
errors.

4.4.3 Effectiveness of XR interfaces in CAP authoring and validation.
As discussed in Related Works, 2D-based interfaces are prevalent
in commercial CAP authoring tools and professional context-aware
application development. With the advances of the XR technol-
ogy, only a few works [92] explored the advantages of utilizing
this emerging technology in CAP authoring tasks. In this paper,
the positive feedback received on the innovative XR-based testing
approach, along with XR’s immersive capabilities, suggests that
the symbiosis of XR and CAP remains a promising area for future
research. On one hand, the spatial awareness of XR contributes to
a more intuitive representation of spatially sensitive contexts such
as object states and activities, which empowers users to intuitively
include contexts from the attaching physical objects or locations.
Further, the immersive visualization of different context instances
enables users who do not have expertise in the concept of unit
testing to rapidly understand imaginary contextual scenarios, and
identify failures. This feedforward idea supported by XR success-
fully bridges the temporal gap between authoring and usage of a
CAP, and enables the novel author-test-refine workflow introduced
in this paper. We believe that the fusion of XR technology with
CAP authoring not only enriches the process with greater intuitive-
ness and immersion but also facilitates understanding complicated
real-world contextual combinations during authoring. This synergy,
therefore, merits further research exploration, promising signifi-
cant advancements in the field of CAP development. Additionally,
unlike conventional 2D-based UIs which have undergone extensive
refinement over the decades, the design of XR interfaces still needs
large-scale and long-term studies to lower the user friction associ-
ated with this relatively new technology. In the next section, we
outline various concerns that could guide further improvements of
the XR interfaces in CAP authoring.

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Qian, et al.

5 LIMITATION AND FUTUREWORK
More complicated contexts andCAPs. In this work, we primarily
focus on the authoring of one single CAP following the framework
discussed in Section 3.3. The quantitative results of the user study
proved that with the additional validation stage, the users could
successfully iterate the CAPs to make them more accurate.

One concern is that the current design of Fast-Forward Reality
follows the mainstream CAP authoring tools that leverage nominal
context factors (e.g., discrete labels output by Machine Learning
modules). Yet, prior works such as CAPturAR [92] and DART [56]
have adopted the programming by demonstration metaphor to en-
able the definition and detection of non-nominal contexts (e.g., a
‘clip’ of human activity, a time series of audio signals that repre-
sent people having group conversations). We envision integrating
similar features in Fast-Forward Reality where users could directly
demonstrate specific context factors rather than selecting them one
by one. However, how to generate test cases that help identify errors
requires further research. For instance, how the system knows the
semantics of a demonstrated ‘clip’ and finds the counter-examples
from the context history requires either more sophisticated Machine
Learning solutions or a systematic formative study to distill new
design guidelines.

Our system supports the authoring of multiple CAPs targeting
different smart functions while potential errors can also be elim-
inated via the validation (e.g., if a CAP controls the music player
state, and a user is authoring another CAP for the TV, the test
case generation algorithm would suggest the user considering the
music player if these two object state context factors are highly
correlated. Yet, when the user creates multiple CAPs to control
the same smart function (e.g., play different genres of music under
different contexts), how to inform the user of the potential conflicts
would be an issue, which has also been addressed by prior works
[60, 81]. One straightforward solution is to directly include the
other CAPs that control the same function into the test cases, and
let the user to edit all the CAPs accordingly. Leveraging AI-based
approaches such as associate rule mining [2] and decision trees to
enable users to manage the priority among existing CAPs could be
another solution.

Most of the users agreed that the current trigger-actionmetaphor
and the provided types of the context factors fulfilled their needs of
authoring CAPs. Some users mentioned considering time-sensitive
contexts such as ‘I was having a meeting, then make a cup of coffee’.
Since a user’s context history is collected sequentially, it is feasible
to calculate the uncertainty coefficients between any two context
factors in three temporal domains: past, present, and future. In
this way, the system could enable users to author and validate
time-sensitive CAPs. Meanwhile, by using the immersive authoring
environment, prior arts [13, 92] visualize a user’s past activities
with XR animations. Instead of showing static XR icons, we could
further show dynamic test cases indicating time elapses.

Different levels of immersiveness.While being situated in
the XR authoring environment, the users welcomed the capability
to test each case by acting it out immersively. One user mentioned
that: “Currently, everything is inside one home environment, I was
considering some contexts like ‘go-to-office’ or ‘while-driving’.” (P11)
In addition, P2 raised an interesting feature that “I was wondering

if I could see more than one test case at the same time. Maybe show-
ing me some miniature layouts.” Considering the diversity of the
available contexts and the different user backgrounds, providing
different levels of immersiveness to visit test cases and author CAPs
would be necessary. For instance, prior works have shown the ca-
pability to immerse users into different virtual scenes [72, 99], or
even showing different room layouts at one time [67] using con-
ventional non-XR UIs. While the current system could be adapted
to desktop/mobile devices (e.g., visualize CAPs with 2D UIs, visu-
alize multiple test cases with duplicated room layouts, and use an
on-screen controller to move the virtual camera within the envi-
ronment during testing), further studies are required to investigate
whether the benefits of such adaptation would compensate for the
reduced effectiveness of the feedforward actions for understanding
the test cases. Especially, for novice users who are not familiar with
the ideas of under/over-specified CAPs and unit tests, we need
more studies to evaluate whether the conventional-UI-based design
would introduce additional mental loads.

Lower the friction of using the system. We received com-
plimentary feedback on the immersiveness enabled by the in-situ
placed XR contents and the intuitive system operations. Some users
(P1 and P3) mentioned visualization issues when some XR contents
were overlaid and clustered from some specific view directions.
Meanwhile, we envision more smart objects and functions would
be available in future smart home environments. To reduce users’
visual loads, adaptively displaying the 3D contents when users
move closer to them [44] or pay attention to different contents
[51, 70], and adding a filter function to solely show contexts of a
specific type of object would be a future improvement of the system.
Furthermore, test cases generated by the system received positive
feedback during the user study. Enabling users to act out each test
case facilitates them to understand whether the CAP needs to be
modified. With these highlighted features being kept, we could
add pre-processed automation to further reduce users’ workloads.
Ranking test cases according to the uncertainty coefficients would
be one improvement according to P9’s suggestion. Users could pay
more attention to those scenarios that would more likely happen
in real life, and rapidly walk through the test cases that are listed
at the end. We could also design a more advanced criterion that
measures the importance of the generated test cases (e.g., if a user
edits the CAP based on a test case, to what extent could the current
CAP perform more accurately).

6 CONCLUSION
We presented Fast-Forward Reality, a novel workflow that supports
an end-user to validate the CAPs with diverse test cases via feedfor-
ward simulation in XR. We first identified that existing authoring
processes can result in under-specified or over-specified CAPs that
cause unexpected behavior, leading to annoyance and frustration.
In order to address this issue, we proposed an ‘author-test-refine’
workflow by leveraging the unit test approach in the software
programming area. In specific, using the pervasively collected ev-
eryday context record and adopting the frameworks proposed by
prior context-aware application validation works, we designed a
computational approach to generate multiple unit test cases that not
only are tailored to the user’s personal routines but also help reveal

Fast-Forward Reality CHI ’24, May 11–16, 2024, Honolulu, HI, USA

mistakes in the authored CAPs. Then, while being immersed in an
XR-based authoring environment, users can experience test cases
through in-situ visualization that conveys feedforward contextual
scenarios, enabling intuitive validation of CAPs. A user study was
conducted to evaluate the effectiveness of our test case generation
algorithm and the design and functionality of the XR authoring
environment. The high accuracy of user-authored CAPs and posi-
tive feedback on system features validated the overall performance
and usability of the system. As an increasing amount of complex
contexts can be digitalized into the digital space, we believe that
our work can inform and provide inspiration for future investi-
gation on how authoring systems can assist non-expert users to
create error-free intelligent automation and policies that enhance
the quality of life and work.

REFERENCES
[1] Gregory D Abowd, Anind K Dey, Peter J Brown, Nigel Davies, Mark Smith, and

Pete Steggles. 1999. Towards a better understanding of context and context-
awareness. In International symposium on handheld and ubiquitous computing.
Springer, 304–307.

[2] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. 1993. Mining association
rules between sets of items in large databases. In Proceedings of the 1993 ACM
SIGMOD international conference on Management of data. 207–216.

[3] Alexa Routines 2022. Alexa Routines. https://www.amazon.com/alexa-routines/.
[4] Stavros Antifakos, Nicky Kern, Bernt Schiele, and Adrian Schwaninger. 2005.

Towards improving trust in context-aware systems by displaying system con-
fidence. In Proceedings of the 7th international conference on Human computer
interaction with mobile devices & services. 9–14.

[5] Alejandro Barredo Arrieta, Natalia Díaz-Rodríguez, Javier Del Ser, Adrien Ben-
netot, Siham Tabik, Alberto Barbado, Salvador García, Sergio Gil-López, Daniel
Molina, Richard Benjamins, et al. 2020. Explainable Artificial Intelligence (XAI):
Concepts, taxonomies, opportunities and challenges toward responsible AI.
Information fusion 58 (2020), 82–115.

[6] Dana H Ballard, MaryMHayhoe, Polly K Pook, and Rajesh PN Rao. 1997. Deictic
codes for the embodiment of cognition. Behavioral and brain sciences 20, 4 (1997),
723–742.

[7] Adrian Bangerter. 2004. Using pointing and describing to achieve joint focus of
attention in dialogue. Psychological science 15, 6 (2004), 415–419.

[8] Victoria Bellotti and Keith Edwards. 2001. Intelligibility and Accountability: Hu-
man Considerations in Context-Aware Systems. Human–Computer Interaction
16, 2-4 (2001), 193–212. https://doi.org/10.1207/S15327051HCI16234_05

[9] Sanjay Bhati, Harshid Soni, Vijayrajsinh Zala, Parth Vyas, and Yash Sharma.
2017. Smart medicine reminder box. IJSTE-International Journal of Science
Technology & Engineering 3, 10 (2017), 172–177.

[10] Valentina Bianchi, Marco Bassoli, Gianfranco Lombardo, Paolo Fornacciari,
Monica Mordonini, and Ilaria De Munari. 2019. IoT wearable sensor and deep
learning: An integrated approach for personalized human activity recognition
in a smart home environment. IEEE Internet of Things Journal 6, 5 (2019),
8553–8562.

[11] Michael S Borofsky, Casey A Dauw, Nadya York, Colin Terry, and James E
Lingeman. 2018. Accuracy of daily fluid intake measurements using a “smart”
water bottle. Urolithiasis 46, 4 (2018), 343–348.

[12] Yuanzhi Cao, Xun Qian, Tianyi Wang, Rachel Lee, Ke Huo, and Karthik Ramani.
2020. An exploratory study of augmented reality presence for tutoring machine
tasks. In Proceedings of the 2020 CHI conference on human factors in computing
systems. 1–13.

[13] Yuanzhi Cao, Tianyi Wang, Xun Qian, Pawan S Rao, ManavWadhawan, Ke Huo,
and Karthik Ramani. 2019. GhostAR: A time-space editor for embodied authoring
of human-robot collaborative task with augmented reality. In Proceedings of
the 32nd Annual ACM Symposium on User Interface Software and Technology.
521–534.

[14] Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh. 2017. Realtime multi-
person 2d pose estimation using part affinity fields. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 7291–7299.

[15] Alberto Huertas Celdrán, Félix J García Clemente, Manuel Gil Pérez, and Gre-
gorio Martínez Pérez. 2014. SeCoMan: A semantic-aware policy framework
for developing privacy-preserving and context-aware smart applications. IEEE
Systems Journal 10, 3 (2014), 1111–1124.

[16] Seungho Chae, Yoonsik Yang, Heeseung Choi, Ig-Jae Kim, Junghyun Byun,
Jiyoon Jo, and Tack-Don Han. 2016. Smart advisor: Real-time information
provider with mobile augmented reality. In 2016 IEEE International Conference
on Consumer Electronics (ICCE). IEEE, 97–98.

[17] Yi-Ting Chiang, Kuo-Chung Hsu, Ching-Hu Lu, Li-Chen Fu, and Jane Yung-Jen
Hsu. 2010. Interaction models for multiple-resident activity recognition in a
smart home. In 2010 IEEE/RSJ International Conference on Intelligent Robots and
Systems. IEEE, 3753–3758.

[18] Meghan Clark, Mark W Newman, and Prabal Dutta. 2022. ARticulate: One-
Shot Interactions with Intelligent Assistants in Unfamiliar Smart Spaces Using
Augmented Reality. Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies 6, 1 (2022), 1–24.

[19] Michael H Coen et al. 1998. Design principles for intelligent environments.
AAAI/IAAI 547 (1998), 554.

[20] Dima Damen, Hazel Doughty, Giovanni Maria Farinella, Sanja Fidler, Antonino
Furnari, Evangelos Kazakos, Davide Moltisanti, Jonathan Munro, Toby Perrett,
Will Price, et al. 2018. Scaling egocentric vision: The epic-kitchens dataset. In
Proceedings of the European Conference on Computer Vision (ECCV). 720–736.

[21] Ismayle de Sousa Santos, Rossana Maria de Castro Andrade, Lincoln Souza
Rocha, Santiago Matalonga, Kathia Marcal de Oliveira, and Guilherme Horta
Travassos. 2017. Test case design for context-aware applications: Are we there
yet? Information and Software Technology 88 (2017), 1–16.

[22] Stefan Decker, Sergey Melnik, Frank Van Harmelen, Dieter Fensel, Michel Klein,
Jeen Broekstra, Michael Erdmann, and Ian Horrocks. 2000. The semantic web:
The roles of XML and RDF. IEEE Internet computing 4, 5 (2000), 63–73.

[23] Anind K Dey. 2001. Understanding and using context. Personal and ubiquitous
computing 5, 1 (2001), 4–7.

[24] Anind K Dey, Gregory D Abowd, and Daniel Salber. 2001. A conceptual frame-
work and a toolkit for supporting the rapid prototyping of context-aware appli-
cations. Human–Computer Interaction 16, 2-4 (2001), 97–166.

[25] Anind K Dey, Raffay Hamid, Chris Beckmann, Ian Li, and Daniel Hsu. 2004. a
CAPpella: programming by demonstration of context-aware applications. In
Proceedings of the SIGCHI conference on Human factors in computing systems.
33–40.

[26] Anind K Dey, Timothy Sohn, Sara Streng, and Justin Kodama. 2006. iCAP:
Interactive prototyping of context-aware applications. In International conference
on pervasive computing. Springer, 254–271.

[27] Tom Djajadiningrat, Kees Overbeeke, and Stephan Wensveen. 2002. But How,
Donald, Tell Us How? On the Creation of Meaning in Interaction Design through
Feedforward and Inherent Feedback. In Proceedings of the 4th Conference on
Designing Interactive Systems: Processes, Practices, Methods, and Techniques (Lon-
don, England) (DIS ’02). Association for Computing Machinery, New York, NY,
USA, 285–291. https://doi.org/10.1145/778712.778752

[28] Yegang Du, Yuto Lim, and Yasuo Tan. 2019. A novel human activity recognition
and prediction in smart home based on interaction. Sensors 19, 20 (2019), 4474.

[29] Barrett Ens, Fraser Anderson, Tovi Grossman, Michelle Annett, Pourang Irani,
and George Fitzmaurice. 2017. Ivy: Exploring spatially situated visual program-
ming for authoring and understanding intelligent environments. In Proceedings
of the 43rd Graphics Interface Conference. 156–162.

[30] Andreas Rene Fender and Christian Holz. 2022. Causality-preserving Asyn-
chronous Reality. In CHI Conference on Human Factors in Computing Systems.
1–15.

[31] Aurel-Dorian Floarea and Valentin Sgârciu. 2016. Smart refrigerator: A next
generation refrigerator connected to the IoT. In 2016 8th International Conference
on Electronics, Computers and Artificial Intelligence (ECAI). IEEE, 1–6.

[32] Kristen Grauman, Andrew Westbury, Eugene Byrne, Zachary Chavis, Antonino
Furnari, Rohit Girdhar, Jackson Hamburger, Hao Jiang, Miao Liu, Xingyu Liu,
et al. 2022. Ego4d: Around the world in 3,000 hours of egocentric video. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
18995–19012.

[33] Shalom Greene, Himanshu Thapliyal, and David Carpenter. 2016. IoT-based fall
detection for smart home environments. In 2016 IEEE international symposium
on nanoelectronic and information systems (iNIS). IEEE, 23–28.

[34] Tobias Griebe and Volker Gruhn. 2014. A model-based approach to test automa-
tion for context-aware mobile applications. In Proceedings of the 29th Annual
ACM Symposium on Applied Computing. 420–427.

[35] Jens Grubert, Tobias Langlotz, Stefanie Zollmann, and Holger Regenbrecht. 2016.
Towards pervasive augmented reality: Context-awareness in augmented reality.
IEEE transactions on visualization and computer graphics 23, 6 (2016), 1706–1724.

[36] Corentin Haidon, Hélène Pigot, and Sylvain Giroux. 2020. Joining semantic and
augmented reality to design smart homes for assistance. Journal of Rehabilitation
and Assistive Technologies Engineering 7 (2020), 2055668320964121.

[37] Paul Hamill. 2004. Unit test frameworks: tools for high-quality software develop-
ment. " O’Reilly Media, Inc.".

[38] Fengming He, Xiyun Hu, Jingyu Shi, Xun Qian, Tianyi Wang, and Karthik
Ramani. 2023. Ubi Edge: Authoring Edge-Based Opportunistic Tangible User
Interfaces in Augmented Reality. In Proceedings of the 2023 CHI Conference on
Human Factors in Computing Systems. 1–14.

[39] Sumi Helal, Bryon Winkler, Choonhwa Lee, Youssef Kaddoura, Lisa Ran, Carlos
Giraldo, Sree Kuchibhotla, and William Mann. 2003. Enabling location-aware
pervasive computing applications for the elderly. In Proceedings of the First
IEEE International Conference on Pervasive Computing and Communications,

https://doi.org/10.1207/S15327051HCI16234_05
https://doi.org/10.1145/778712.778752

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Qian, et al.

2003.(PerCom 2003). IEEE, 531–536.
[40] Gaoping Huang, Xun Qian, Tianyi Wang, Fagun Patel, Maitreya Sreeram,

Yuanzhi Cao, Karthik Ramani, and Alexander J Quinn. 2021. Adaptutar: An
adaptive tutoring system for machine tasks in augmented reality. In Proceedings
of the 2021 CHI Conference on Human Factors in Computing Systems. 1–15.

[41] Ke Huo, Yuanzhi Cao, Sang Ho Yoon, Zhuangying Xu, Guiming Chen, and
Karthik Ramani. 2018. Scenariot: Spatially mapping smart things within aug-
mented reality scenes. In Proceedings of the 2018 CHI Conference on human
factors in computing systems. 1–13.

[42] IFTTT 2022. IFTTT. https://ifttt.com.
[43] Panagiotis Kostopoulos, Athanasios I Kyritsis, Michel Deriaz, and Dimitri Kon-

stantas. 2016. F2D: a location aware fall detection system tested with real data
from daily life of elderly people. Procedia computer science 98 (2016), 212–219.

[44] Wallace S Lages and Doug A Bowman. 2019. Walking with adaptive augmented
reality workspaces: design and usage patterns. In Proceedings of the 24th Inter-
national Conference on Intelligent User Interfaces. 356–366.

[45] Gun A Lee, Claudia Nelles, Mark Billinghurst, and Gerard Jounghyun Kim.
2004. Immersive authoring of tangible augmented reality applications. In Third
IEEE and ACM International Symposium on Mixed and Augmented Reality. IEEE,
172–181.

[46] Jisoo Lee, Luis Garduño, Erin Walker, and Winslow Burleson. 2013. A tangible
programming tool for creation of context-aware applications. In Proceedings of
the 2013 ACM international joint conference on Pervasive and ubiquitous comput-
ing. 391–400.

[47] Deyi Li and Yi Du. 2017. Artificial intelligence with uncertainty. CRC press.
[48] Shancang Li, Li Da Xu, and Shanshan Zhao. 2015. The internet of things: a

survey. Information systems frontiers 17, 2 (2015), 243–259.
[49] Yang Li, Jason I Hong, and James A Landay. 2004. Topiary: a tool for proto-

typing location-enhanced applications. In Proceedings of the 17th annual ACM
symposium on User interface software and technology. 217–226.

[50] Brian Y Lim and Anind K Dey. 2010. Toolkit to support intelligibility in context-
aware applications. In Proceedings of the 12th ACM international conference on
Ubiquitous computing. 13–22.

[51] David Lindlbauer, Anna Maria Feit, and Otmar Hilliges. 2019. Context-aware
online adaptation of mixed reality interfaces. In Proceedings of the 32nd annual
ACM symposium on user interface software and technology. 147–160.

[52] David Lindlbauer and Andy D Wilson. 2018. Remixed reality: Manipulating
space and time in augmented reality. In Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems. 1–13.

[53] Ziyi Liu, Zhengzhe Zhu, Enze Jiang, Feichi Huang, Ana M Villanueva, Xun
Qian, Tianyi Wang, and Karthik Ramani. 2023. InstruMentAR: Auto-Generation
of Augmented Reality Tutorials for Operating Digital Instruments Through
Recording Embodied Demonstration. In Proceedings of the 2023 CHI Conference
on Human Factors in Computing Systems. 1–17.

[54] Chu Luo, Jorge Goncalves, Eduardo Velloso, and Vassilis Kostakos. 2020. A
survey of context simulation for testing mobile context-aware applications.
ACM Computing Surveys (CSUR) 53, 1 (2020), 1–39.

[55] Chu Luo, Miikka Kuutila, Simon Klakegg, Denzil Ferreira, Huber Flores, Jorge
Goncalves, MikaMäntylä, and Vassilis Kostakos. 2017. TestAWARE: a laboratory-
oriented testing tool for mobile context-aware applications. Proceedings of the
ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 1, 3 (2017),
1–29.

[56] Blair MacIntyre, Maribeth Gandy, Steven Dow, and Jay David Bolter. 2004.
DART: a toolkit for rapid design exploration of augmented reality experiences.
In Proceedings of the 17th annual ACM symposium on User interface software and
technology. 197–206.

[57] Luca Mainetti, Luigi Patrono, Andrea Secco, and Ilaria Sergi. 2016. An IoT-aware
AAL system for elderly people. In 2016 International multidisciplinary conference
on computer and energy science (SpliTech). IEEE, 1–6.

[58] Santiago Matalonga, Felyppe Rodrigues, and Guilherme Travassos. 2015. Chal-
lenges in testing context aware software systems. In 9th Workshop on Systematic
and Automated Software Testing. sn, 51–60.

[59] Meta Quest 2 2022. Meta Quest 2. https://www.oculus.com/experiences/quest/.
[60] Fereshteh Jadidi Miandashti, Mohammad Izadi, Ali Asghar Nazari Shirehjini, and

Shervin Shirmohammadi. 2020. An empirical approach to modeling user-system
interaction conflicts in smart homes. IEEE Transactions on Human-Machine
Systems 50, 6 (2020), 573–583.

[61] Microsoft HoloLens 2 2022. Microsoft HoloLens 2.
https://www.microsoft.com/en-us/hololens.

[62] Diaa Salama Abdul Minaam and Mohamed Abd-ELfattah. 2018. Smart drugs:
Improving healthcare using smart pill box formedicine reminder andmonitoring
system. Future Computing and Informatics Journal 3, 2 (2018), 443–456.

[63] Aamir Mehmood Mirza and Muhammad Naeem Ahmed Khan. 2018. An auto-
mated functional testing framework for context-aware applications. IEEE Access
6 (2018), 46568–46583.

[64] BONNIE M. MUIR. 1994. Trust in automation: Part I. Theoretical issues in the
study of trust and human intervention in automated systems. Ergonomics 37,
11 (1994), 1905–1922. https://doi.org/10.1080/00140139408964957

[65] Michael Nebeling, Katy Lewis, Yu-Cheng Chang, Lihan Zhu, Michelle Chung,
PiaoyangWang, and Janet Nebeling. 2020. Xrdirector: A role-based collaborative
immersive authoring system. In Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems. 1–12.

[66] Michael Nebeling, Shwetha Rajaram, Liwei Wu, Yifei Cheng, and Jaylin Her-
skovitz. 2021. Xrstudio: A virtual production and live streaming system for
immersive instructional experiences. In Proceedings of the 2021 CHI Conference
on Human Factors in Computing Systems. 1–12.

[67] Roy Oberhauser. 2022. VR-Git: Git Repository Visualization and Immersion in
Virtual Reality. In Proceedings of the the Seventeenth International Conference on
Software Engineering Advances. 9–14.

[68] Ian Oppermann, Matti Hämäläinen, and Jari Iinatti. 2004. UWB: theory and
applications. John Wiley & Sons.

[69] JoonSeok Park, Mikyeong Moon, Seongjin Hwang, and Keunhyuk Yeom. 2007.
CASS: A context-aware simulation system for smart home. In 5th ACIS Interna-
tional Conference on Software Engineering Research, Management & Applications
(SERA 2007). IEEE, 461–467.

[70] Ken Pfeuffer, Yasmeen Abdrabou, Augusto Esteves, Radiah Rivu, Yomna Ab-
delrahman, Stefanie Meitner, Amr Saadi, and Florian Alt. 2021. ARtention: A
design space for gaze-adaptive user interfaces in augmented reality. Computers
& Graphics 95 (2021), 1–12.

[71] pytest 2023. pytest. https://docs.pytest.org/en/8.0.x/.
[72] Xun Qian, Fengming He, Xiyun Hu, Tianyi Wang, Ananya Ipsita, and Karthik

Ramani. 2022. ScalAR: Authoring Semantically Adaptive Augmented Reality
Experiences in Virtual Reality. In CHI Conference on Human Factors in Computing
Systems. 1–18.

[73] Xun Qian, Fengming He, Xiyun Hu, Tianyi Wang, and Karthik Ramani. 2022.
ARnnotate: An Augmented Reality Interface for Collecting Custom Dataset of
3D Hand-Object Interaction Pose Estimation. In Proceedings of the 35th Annual
ACM Symposium on User Interface Software and Technology. 1–14.

[74] Raf Ramakers, Kashyap Todi, and Kris Luyten. 2015. PaperPulse: An Integrated
Approach to Fabricating Interactive Paper. In Proceedings of the 33rd Annual
ACM Conference Extended Abstracts on Human Factors in Computing Systems
(Seoul, Republic of Korea) (CHI EA ’15). Association for Computing Machinery,
New York, NY, USA, 267–270. https://doi.org/10.1145/2702613.2725430

[75] Abhishek Roy, SK Das Bhaumik, Amiya Bhattacharya, Kalyan Basu, Diane J
Cook, and Sajal K Das. 2003. Location aware resource management in smart
homes. In Proceedings of the First IEEE International Conference on Pervasive
Computing and Communications, 2003.(PerCom 2003). IEEE, 481–488.

[76] Michele Sama, David S Rosenblum, Zhimin Wang, and Sebastian Elbaum. 2008.
Model-based fault detection in context-aware adaptive applications. In Pro-
ceedings of the 16th ACM SIGSOFT International Symposium on Foundations of
software engineering. 261–271.

[77] Bill Schilit, Norman Adams, and Roy Want. 1994. Context-aware computing
applications. In 1994 first workshop on mobile computing systems and applications.
IEEE, 85–90.

[78] Shortcuts 2022. Shortcuts. https://support.apple.com/guide/shortcuts/create-a-
new-personal-automation-apdfbdbd7123/5.0/ios/15.0.

[79] Henri Theil. 1970. On the estimation of relationships involving qualitative
variables. Amer. J. Sociology 76, 1 (1970), 103–154.

[80] Kashyap Todi, Daryl Weir, and Antti Oulasvirta. 2016. Sketchplore: Sketch and
Explore with a Layout Optimiser. In Proceedings of the 2016 ACM Conference on
Designing Interactive Systems (Brisbane, QLD, Australia) (DIS ’16). Association
for Computing Machinery, New York, NY, USA, 543–555. https://doi.org/10.
1145/2901790.2901817

[81] Rahmadi Trimananda, Seyed Amir Hossein Aqajari, Jason Chuang, Brian Dem-
sky, Guoqing Harry Xu, and Shan Lu. 2020. Understanding and automatically
detecting conflicting interactions between smart home IoT applications. In
Proceedings of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 1215–
1227.

[82] Unity3D 2022. Unity3D. https://unity.com/.
[83] Blase Ur, Elyse McManus, Melwyn Pak Yong Ho, and Michael L Littman. 2014.

Practical trigger-action programming in the smart home. In Proceedings of the
SIGCHI conference on human factors in computing systems. 803–812.

[84] Blase Ur, Melwyn Pak Yong Ho, Stephen Brawner, Jiyun Lee, Sarah Mennicken,
Noah Picard, Diane Schulze, and Michael L Littman. 2016. Trigger-action
programming in the wild: An analysis of 200,000 ifttt recipes. In Proceedings of
the 2016 CHI Conference on Human Factors in Computing Systems. 3227–3231.

[85] Jo Vermeulen, Kris Luyten, and Karin Coninx. 2012. Understanding complex
environments with the feedforward torch. In International Joint Conference on
Ambient Intelligence. Springer, 312–319.

[86] Jo Vermeulen, Kris Luyten, Elise van den Hoven, and Karin Coninx. 2013. Cross-
ing the bridge over Norman’s Gulf of Execution: revealing feedforward’s true
identity. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. 1931–1940.

[87] Huai Wang, WK Chan, and TH Tse. 2014. Improving the effectiveness of testing
pervasive software via context diversity. ACM Transactions on Autonomous and

https://doi.org/10.1080/00140139408964957
https://doi.org/10.1145/2702613.2725430
https://doi.org/10.1145/2901790.2901817
https://doi.org/10.1145/2901790.2901817

Fast-Forward Reality CHI ’24, May 11–16, 2024, Honolulu, HI, USA

Adaptive Systems (TAAS) 9, 2 (2014), 1–28.
[88] Huai Wang, Ke Zhai, and TH Tse. 2010. Correlating context-awareness and

mutation analysis for pervasive computing systems. In 2010 10th International
Conference on Quality Software. IEEE, 151–160.

[89] Junbo Wang, Zixue Cheng, Lei Jing, Yota Ozawa, and Yinghui Zhou. 2012. A
location-aware lifestyle improvement system to save energy in smart home. In
4th International Conference on Awareness Science and Technology. IEEE, 109–114.

[90] Liang Wang, Tao Gu, Xianping Tao, Hanhua Chen, and Jian Lu. 2011. Recogniz-
ing multi-user activities using wearable sensors in a smart home. Pervasive and
Mobile Computing 7, 3 (2011), 287–298.

[91] Tianyi Wang, Xun Qian, Fengming He, Xiyun Hu, Yuanzhi Cao, and Karthik
Ramani. 2021. GesturAR: An Authoring System for Creating Freehand Interac-
tive Augmented Reality Applications. In The 34th Annual ACM Symposium on
User Interface Software and Technology. 552–567.

[92] Tianyi Wang, Xun Qian, Fengming He, Xiyun Hu, Ke Huo, Yuanzhi Cao, and
Karthik Ramani. 2020. CAPturAR: An augmented reality tool for authoring
human-involved context-aware applications. In Proceedings of the 33rd Annual
ACM Symposium on User Interface Software and Technology. 328–341.

[93] Zhimin Wang, Sebastian Elbaum, and David S Rosenblum. 2007. Automated
generation of context-aware tests. In 29th International Conference on Software
Engineering (ICSE’07). IEEE, 406–415.

[94] Zeyu Wang, Cuong Nguyen, Paul Asente, and Julie Dorsey. 2021. Distanciar:
Authoring site-specific augmented reality experiences for remote environments.
In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems.
1–12.

[95] Ron Weinstein. 2005. RFID: a technical overview and its application to the
enterprise. IT professional 7, 3 (2005), 27–33.

[96] Mark Weiser. 1999. The computer for the 21st century. ACM SIGMOBILE mobile
computing and communications review 3, 3 (1999), 3–11.

[97] Konlakorn Wongpatikaseree, Mitsuru Ikeda, Marut Buranarach, Thepchai Sup-
nithi, Azman Osman Lim, and Yasuo Tan. 2012. Activity recognition using
context-aware infrastructure ontology in smart home domain. In 2012 Sev-
enth International Conference on Knowledge, Information and Creativity Support
Systems. IEEE, 50–57.

[98] Chao-Lin Wu, Yi-Show Tseng, and Li-Chen Fu. 2013. Spatio-temporal feature
enhanced semi-supervised adaptation for activity recognition in IoT-based
context-aware smart homes. In 2013 IEEE International Conference on Green

Computing and Communications and IEEE Internet of Things and IEEE Cyber,
Physical and Social Computing. IEEE, 460–467.

[99] Haijun Xia, Sebastian Herscher, Ken Perlin, and Daniel Wigdor. 2018. Space-
time: Enabling fluid individual and collaborative editing in virtual reality. In
Proceedings of the 31st Annual ACM Symposium on User Interface Software and
Technology. 853–866.

[100] Wenhua Yang, Chang Xu, Yepang Liu, Chun Cao, Xiaoxing Ma, and Jian Lu.
2014. Verifying self-adaptive applications suffering uncertainty. In Proceedings
of the 29th ACM/IEEE international conference on Automated software engineering.
199–210.

[101] Hui Ye and Hongbo Fu. 2022. ProGesAR: Mobile AR Prototyping for Prox-
emic and Gestural Interactions with Real-world IoT Enhanced Spaces. In CHI
Conference on Human Factors in Computing Systems. 1–14.

[102] Hui Ye, Jiaye Leng, Chufeng Xiao, Lili Wang, and Hongbo Fu. 2023. ProObjAR:
Prototyping Spatially-aware Interactions of Smart Objects with AR-HMD. In
Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems.
1–15.

[103] Lian Yu, Wei-Tek Tsai, and Gian Perrone. 2016. Testing context-aware appli-
cations based on bigraphical modeling. IEEE Transactions on Reliability 65, 3
(2016), 1584–1611.

[104] Daqing Zhang, Tao Gu, and Xiaohang Wang. 2005. Enabling context-aware
smart home with semantic web technologies. International Journal of Human-
friendly Welfare Robotic Systems 6, 4 (2005), 12–20.

[105] Lei Zhang and Steve Oney. 2020. Flowmatic: An immersive authoring tool for
creating interactive scenes in virtual reality. In Proceedings of the 33rd Annual
ACM Symposium on User Interface Software and Technology. 342–353.

[106] Yang Zhang, Yasha Iravantchi, Haojian Jin, Swarun Kumar, and Chris Harrison.
2019. Sozu: Self-powered radio tags for building-scale activity sensing. In
Proceedings of the 32nd Annual ACM Symposium on User Interface Software and
Technology. 973–985.

[107] Hong Zhu, Patrick AV Hall, and John HR May. 1997. Software unit test coverage
and adequacy. Acm computing surveys (csur) 29, 4 (1997), 366–427.

[108] Zhengzhe Zhu, Ziyi Liu, Youyou Zhang, Lijun Zhu, Joey Huang, Ana M Vil-
lanueva, Xun Qian, Kylie Peppler, and Karthik Ramani. 2023. LearnIoTVR: An
End-to-End Virtual Reality Environment Providing Authentic Learning Experi-
ences for Internet of Things. In Proceedings of the 2023 CHI Conference on Human
Factors in Computing Systems. 1–17.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Context-Aware Policies for End-Users
	2.2 End-User Authoring of Context-Aware Policies
	2.3 Validation of Context-Aware Policies
	2.4 Immersiveness in XR

	3 Fast-Forward Reality
	3.1 Design Goals
	3.2 Target Scenarios and System Walkthrough
	3.3 Framework for Authoring
	3.4 Test Case Generation in Unit Testing
	3.5 XR Authoring Interface
	3.6 Implementation

	4 User Study
	4.1 Study Setup
	4.2 Study Method
	4.3 Study Results
	4.4 Discussion

	5 Limitation and Future work
	6 Conclusion
	References

