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ABSTRACT 
Afordance refers to the perception of possible actions allowed by 
an object. Despite its relevance to human–computer interaction, no 
existing theory explains the mechanisms that underpin afordance-
formation; that is, how afordances are discovered and adapted 
via interaction. We propose an integrative theory of afordance-
formation based on the theory of reinforcement learning in cogni-
tive sciences. The key assumption is that users learn to associate 
promising motor actions to percepts via experience when rein-
forcement signals (success/failure) are present. They also learn to 
categorize actions (e.g., “rotating” a dial), giving them the ability 
to name and reason about afordance. Upon encountering novel 
widgets, their ability to generalize these actions determines their 
ability to perceive afordances. We implement this theory in a vir-
tual robot model, which demonstrates human-like adaptation of 
afordance in interactive widgets tasks. While its predictions align 
with trends in human data, humans are able to adapt afordances 
faster, suggesting the existence of additional mechanisms. 

CCS CONCEPTS 
• Human-centered computing → HCI theory, concepts and 
models. 
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1 INTRODUCTION 
Imagine seeing a widget for the frst time. How do you know how to 
interact with it? We often “just know” how to do it; but this ability 
sometimes breaks down, and we must fgure out what to do. An-
swers to this foundational problem in human–computer interaction 
(HCI) have built on James Gibson’s concept of afordance [26]: “The 
afordances of the environment are what it ofers the animal, what it 
provides or furnishes, either for good or ill” [25]. A defning aspect 
of afordance is its body-relativity: the tight connection between 
perception and one’s body. In HCI, the concept has become part of 
textbooks and design guidelines [47, 49], and has seen multiple ex-
tensions such as technological [18, 61], interactive [73], and social 
and cultural afordances [51, 65]. 

But how do people learn afordances of the objects they interact 
with? According to the ecological perspective, body-relative feature 
comparisons determine possible actions [67]. For example, both 
the height of the steps and the length of one’s legs infuence the 
perception of whether a fight of stairs is “climbable” or not [75]. But 
body-relativity is not sufcient for HCI as it does not explain how 
such features are related to experience. For example, what if one 
fails to climb a particular fight of stairs; should that afordance not 
be changed accordingly? We believe so. In contrast, the recognition 
perspective, which has been studied in computer vision and AI, 
considers afordance to be an act of categorization (or classifcation) 
learned via supervised learning [14]. For example, a deep neural 
net can be trained with images of stairs annotated as “climbable” 
or “not climbable”. Upon failing to climb the stairs, images of those 
stairs should feed into retraining of the network, thus enabling it 
to see it as “not climbable”. Neither view explains how we discover 
afordances in the frst place. 
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You would probably…

…press this one …and rotate this one. But how about this one?

Figure 1: What action would you take with the widget on 
the right? This paper claims that afordances are associative 
percepts that map the widget’s perceived features to the pos-
sible motor actions and their expected utility. The shown 
widgets are from our empirical study 1. 

This paper contributes to the understanding of afordance in 
HCI, in particular by studying an alternative cognitive mechanism 
that can explain afordance formation and perception. Furthermore, 
we show the application of the theory of reinforcement learning 
from cognitive sciences as a tool to explain how we form and adapt 
afordances through experience. The theory proposed in this paper 
ofers an integrative approach that explains how body-relative 
perceptions can be obtained and updated via experience. 

Our focus is on an HCI-relevant setting where interactive wid-
gets (e.g., buttons and knobs) are presented and a user must decide 
how to interact with them (Figure 1). We aim to answer two funda-
mental questions about afordance-formation: 

(1) What cognitive mechanisms underpin afordances? We 
argue for two cognitive processes: First, users learn associ-
ations between the expected utility of motor actions (e.g., 
that it is possible to turn an object with a hand) and percepts 
(e.g., seeing a knob). Second, users learn to assign categories 
to these motor actions (e.g., turning with hand means “ro-
tating”). These two together allow us to perceive an action 
possibility with a label. Both processes have some generaliza-
tion capacity: they can “leap” beyond previous observations, 
allowing us to perceive afordances with widgets we have 
not seen before. 

(2) How are afordances learned? We propose that the above 
two types of knowledge are learned via interaction in the 
presence of reinforcement signals. For example, when you 
try to turn a widget but it does not turn, negative reinforce-
ment helps you update your beliefs and pick a diferent motor 
action next time. The theory of reinforcement learning ex-
plains how these two processes – updating and exploring – 
take place. 

In the rest of the paper, we frst discuss existing theories of 
afordance-formation in HCI and other felds. We then argue that 
reinforcement learning ofers a biologically plausible and powerful 
explanation to the questions of afordance discovery and adaptation. 
In particular, it can explain how afordance perceptions are updated 
in a world where we encounter novel designs all the time. The 
theory achieves this without resorting to any “special mechanism”. 

Rather, afordances are the result of everyday learning. To under-
stand afordance formation and perception, we present fndings 
from two empirical studies with human participants. They were 
asked to describe or demonstrate what actions were allowed by 
widgets that they had not interacted with previously. We found 
evidence for diferent mechanisms that complement each other, 
enabling us to make a more accurate judgment of what actions 
a widget afords. Under uncertainty (i.e., when unsure about the 
correct action), or when learning and discovering afordances (i.e., 
fguring out what is the correct ways of using a widget), partici-
pants increased the use of motion planning, simulating possible 
motions in their mind, which is one mechanism in reinforcement 
learning to predict the utility of possible actions. Finally, we devel-
oped a computational model of our theory that enables a virtual 
robot model to similarly perform afordance elicitation tasks. We 
tested our model in a simulation environment, where an agent with 
a virtual arm and eyes interacted with diferent widgets. We show 
that when a reinforcement signal is present, afordances could be 
learned interactively, as predicted. 

2 RELATED WORK 
We review the present understanding of afordance in psychol-
ogy, its relevance to design and HCI, and how it is modeled for 
applications in machine learning and AI. 

2.1 Ecological Perspective in Psychology 
James Gibson spent years developing the concept of afordance. He 
ofered a defnition in his seminal book [26], and concretized it later 
as follows [24]: “Subject to revision, I suggest that the afordance of 
anything is a specifc combination of the properties of its substance and 
its surfaces taken with reference to an animal.” He later characterized 
it [25]: “If a terrestrial surface is nearly horizontal (instead of slanted), 
nearly fat (instead of convex or concave), and sufciently extended 
(relative to the size of the animal) and if its substance is rigid (relative 
to the weight of the animal), then the surface afords support.” To 
Gibson, afordance refers to opportunities to act based on features 
of the environment as they are presented to the animal. 

Ecological psychologists elaborated on Gibson’s theory. The 
most agreed-on defnition, endorsed by Heft [28], Michaels [41], 
Reed [53], Stofregen [59], and Turvey [66], is that afordances are 
body-relative properties of the environment that have some signif-
cance to animal’s behavior. According to Turvey, afordances are 
dispositional properties of the environment [67]. Dispositional prop-
erties are tendencies to manifest some other property in certain 
circumstances. Something is “fragile” if it would break in certain 
common but possible circumstances, particularly in circumstances 
in which it is struck with force. Later, Chermo proposed relational 
afordance [8]. In contrast to the dispositional account, relational 
afordances are not properties of the environment, nor of the or-
ganism, but rather the organism–environment system. 

Empirical research on humans has provided evidence for the 
body-relative perspective. In particular, people are able to judge 
afordances reliably in various tasks [16, 17, 75]. There is also evi-
dence for body-relativity, such as in the stair climbing experiment 
[75] and in its extension to doorways [17]. People can accurately 
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predict if a stair of dynamic height can be stepped on or not. Al-
though Gibson and others mostly agreed that afordance perception 
relies on body-relative features, it is not clear how they are acquired 
in the frst place. Gibson simply stated that afordances are directly 
perceived, and we simply pick up the information [25]. Interestingly, 
evidence shows that afordances do change with practice [11, 13, 17], 
and some theorists have proposed that afordances are learned and 
developed, however without specifying how [22, 23]. To the best 
of our knowledge, our work is the frst attempt to explain how this 
occurs through interaction. 

2.2 Afordance in HCI and Design 
Afordance is a fundamental concept in HCI and design. Theories 
related to it have been developed for years, but the process of for-
mation and adaptation of afordances has not been explained or 
explored. William Gaver frst introduced afordance to HCI by us-
ing it to describe actions on technological devices [19]. He defned 
afordances as “properties of the world that are compatible with and 
relevant for people’s interaction. When afordances are perceptible, 
they ofer a link between perception and action.” He separated afor-
dances (the ways things can be used) from perceptible information. 
Hence, he noted that “hidden afordances” (afordances that are not 
perceptible) and “false afordances” (wrongly perceived afordances) 
can exist. 

Donald Norman later introduced afordance to the design feld 
in his bookThe Psychology of Everyday Things [48]. In his view, 
afordances suggest how artifacts should be used [47, 49]: “Afor-
dances provide strong clues to the operations of things. [...] When 
afordances are taken advantage of, the user knows what to do just by 
looking: no picture, label or instruction is required.” He implied that 
afordances should be appropriately incorporated to guide users. 
He also elaborated that “afordance refers to the perceived and actual 
properties of the thing ( [48])”, and later rephrased afordance en-
tirely to “perceived afordance”. This suggests that there are actual 
afordances and perceived afordances, and they may be diferent. 
In contrast, according to Gibson’s original defnition, afordances 
are exclusively “perceived action possibilities”. McGrenere and Ho 
[40] later pointed out that due to the lack of a single unifed under-
standing, HCI researchers tend to either follow Gibson’s original 
defnition [1, 4, 72, 77], adopt Norman’s view [12, 32, 46], or even 
create their own variations [42, 55, 71]. In an attempt to address the 
issue, McGrenere and Ho [40] proposed a framework that separated 
afordances from the information that specifes them. Yet, there are 
problems related to the meanings of afordance and how to apply 
it to design [5, 50]. 

More recently, researchers introduced new types of afordances 
to expand the concept to more complicated interactions. For in-
stance, several works [2, 3, 33] have proposed an activity-based 
theoretical perspective to afordances, which is concerned with 
the social-historical dimension of an actor’s interaction with the 
environment. Turner [65] further classifed afordances into simple 
afordances and complex afordances: “Simple afordance corresponds 
to Gibson’s original formulation, while complex afordances embody 
such things as history and practice.” Similarly, Ramstead et al. [52] in-
troduced cultural afordance, which refers to action possibility that 
depends on “explicit or implicit expectations, norms, conventions, and 

cooperative social practices.” While these new classifcations expand 
the application scope of afordance, they also imply that diferent 
afordance formation processes may exist in diferent afordance 
types. Moreover, the implications and applications of afordances 
in design practice remain vague. 

We argue that there is a need to unveil the discovery, adaptation, 
and perception mechanisms of afordances. A theory that explains 
afordance formation through interaction could serve as a common 
ground and help unify existing theories and defnitions. By ofering 
a better understanding of the concept, it can also provide actionable 
means to understand and improve interfaces. 

2.3 Afordance in Machine Learning 
Computational models for afordance have been presented in com-

puter vision and robotics. A large number of works consider afor-
dance detection as a combined task of recognizing both the object 
and the actions it allows. Nguyen et al. [45] suggest a two-phase 
method where a deep Convolutional Neural Network (CNN) frst 
detects objects; based on this detection, afordances are observed 
by a second network as a pixel-wise labeling task. Do et al. [14] 
introduce a combination of object and afordance detection by using 
one single deep CNN, which is trained in an end-to-end manner, 
instead of sequential object and afordance detection. Chuang et al. 
[9] use Graph Neural Networks (GNN) to conduct afordance rea-
soning from egocentric scene view and a language model based on 
Recurrent Neural Network (RNN) to produce explanations and con-
sequences of actions. The capabilities for better generalization can 
be improved by training low-dimensional representations of high-
dimensional state representations, such as autoencoders [15, 70]. 
In Hämäläinen et al. [30], one type of variational autoencoder is 
used to produce low-dimensional afordance representation from 
RGB images. In this line of work [35, 43, 57, 58], afordance detec-
tion is purely based on extracting features from images by using 
deep convolutional networks and supervised learning, and there is 
no exploration or world models involved. Furthermore, the agents 
are not able to adapt according to the interactions with the envi-
ronment. Therefore, these models are not suitable for explaining 
real-world afordance perception. 

A few recent works have also looked into Reinforcement Learn-
ing (RL) approaches to identify afordances via interaction with 
the world. Nagarajan and Grauman [44] proposed an RL agent au-
tonomously discovers objects and their afordances by trying out a 
set of pre-defned high-level actions in a 3D task environment. Sim-

ilarly, Grabner et al. [27] detects afordance by posing a human 3D 
model into certain actions on the targets and calculating the proba-
bility of success. We are inspired by computational demonstrations 
like these and develop the argument that the ability to explore via 
trial-and-errors should be the cognitive mechanism that underpins 
human afordance learning. However, these methods are limited by 
pre-defned actions; the agent cannot learn new actions outside the 
training set nor fne-tune the actions. The assumption of having 
pre-trained actions is also detached from real-world experience. 

Lastly, research in RL and robotic felds brought afordances to 
the micro-movements, that is, the small actions that an agent can 
take at each timestep. For instance, Khetarpal et al. [34] defned 
afordance as the possibility of transition from a state to another 
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desired state. Manoury et al. [39] trains the agent to learn the feasi-
ble primitive actions and by an intrinsically motivated exploration 
algorithm. This approach allows the agents to learn the possible 
actions in diferent states, which efectively boosts the training 
efciency. However, the afordance in these works is focused on 
the possibility of micro, primitive actions, which are distinct from 
the general notion of afordances of “larger” actions, such as press, 
grasp, sit. Our work does not extend from this view. 

Our work presents a novel framing of afordance formation based 
on reinforcement learning, and applies this to enable a virtual robot 
to learn and adapt afordances via interaction. 

3 THEORY: AFFORDANCE AS 
REINFORCEMENT LEARNING 

Reinforcement learning is a grand theory that is presently uniting 
cognitive neurosciences and machine learning in an efort to un-
derstand general principles of adaptive behavior [20, 56, 60, 63]. 
Reinforcement learning can be defned as “the process by which 
organisms learn through trial and error to predict and acquire re-
ward” [20]. Prior to this paper, reinforcement learning had not been 
developed as a psychological theory of afordance for HCI. For a 
review of other applications of this theory in HCI, see [29]. In what 
follows, we provide a synthesis of the assumptions of the theory as 
they are relevant for afordance-formation, especially in HCI. 

Afordances are learned when reinforcement signals are provided 
in response to motions. To learn which motor command leads to the 
highest reinforcement signal (reward), an organism must try out 
several possible motions. This experience results in concomitant 
updates in predicted rewards. For example, assume you have never 
encountered a rotary dial before. If your initial motion (e.g., push) 
does not lead to the expected or desired feedback, you receive a 
negative reinforcement signal. The rational response then is to 
avoid that motion in the future [7]. Even when repeating a correct 
motion, the exact strategy or action may be further optimized to 
acquire the positive reward faster and with less efort. 

Afordance perception is guided by predicted rewards. The theory 
of reinforcement learning suggests that prediction is the key to 
the problem posed by delayed feedback [60]. In order to pick an 
action right now, the brain must learn to predict how good eventual 
outcomes that choice may lead to [20]. The better these predic-
tions are, the better the action that is based on them. In cognitive 
neuroscience, dopamine is identifed as the transmitter of phasic 
signals that convey what are called reward prediction errors [21]. 
We hypothesize that the emergent role of rewards is to report the 
salience of perceptual cues that leads to a sequence of actions. In 
this sense, rewards mediate the afordance of cues that elicit motor 
behavior [10]; in much the same way that attention mediates the 
salience of cues in the perceptual domain [31]. 

Afordances are learned by exploring and exploiting. Learning 
afordances purely via trial and error would be highly inefcient, 
as there are too many possible motions to try out at random. Ac-
cording to the theory of reinforcement learning, a rational agent, 
after having identifed a satisfactory way to perform, will keep 
doing that as long as that strategy works (exploitation). In the ab-
sence of such a strategy, or when it fails, it needs to explore other 

options. But when to try out which motion? This is the so-called 
exploration/exploitation dilemma [60]. The theory purports that an 
organism should pick the action that it expects to accumulate most 
rewards in some window of time. 

Afordance perception generalizes to unseen instances of a cat-
egory. Afordance perceptions need to generalize. Consider, for 
example, seeing a beige cup with a triangle-shaped yellow handle. 
You may have not seen this particular cup before, yet you know 
how to grasp it. Somehow your experience with thousands of cups 
in your life transfers to this particular cup. Reinforcement learning 
proposes two cognitive mechanisms for generalization: 1) general-
ization of policies via feature-similarity and 2) generalization via 
motion planning in mind. In the former, two objects that share 
similar perceptual features are associated with the same policy. 
The shapes that indicate a cup, and possibly its context, are associ-
ated with grasping more than anything else. Such generalization 
can be modeled, for example, via deep neural nets [36], as in our 
computational model. In the latter, we simulate motions with our 
bodies and predict their associated consequences. In reinforcement 
learning theory, this is called model-based reinforcement learning 
[20]: a mode of reinforcement learning that is associated with better 
generalizability but higher efort. 

We learn to associate categories (labels) with afordances. Every-
thing that we have stated above could be applied to any animal, not 
just humans. However, afordance, as it has been treated in previous 
research, has almost always assumed linguistic categorization of 
actions [6, 68]. We concur and argue that categorization is not just 
for sensemaking but an essential mechanism that accelerates the 
learning of afordances. It enables reasoning, social communication, 
and acculturation – processes that boost the development of cogni-
tive representations. The most straightforward way to categorize 
afordances considers the movement itself. For example, motions, 
where the fnger comes in contact with a surface and pushes it 
downwards, can be classifed as “presses”. In machine learning 
terms, this is a classifcation problem where one needs to go from 
perceptual input vector to a distribution over possible labels. But 
we may also categorize actions based on similarities in consequences. 
For example, when a fnger pushes down on a keycap and a positive 
feedback signal (“click” sound) is observed, the motion could also 
be classifed as a ”press”. 

4 STUDY 1: PERCEIVING AFFORDANCES IN 
INTERACTIVE WIDGETS 

To understand the contribution of diferent cognitive mechanisms 
in afordance perception and to test the hypothesis that they are 
adapted based on experience, we conducted two studies. Study 1 
aims to shed light on which mechanisms are present in afordance 
perceptions. More specifcally, it seeks to answer two research 
questions: 

RQ1: Which internal mechanisms are employed during af-
fordance perception? 
RQ2: How does prior experience with particular types of 
widgets infuence afordance perception? 
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The main idea of the study is to manipulate which widgets are 
experienced prior to seeing a novel widget (see Figure 2). Afor-
dances have been previously studied in HCI and psychology via a 
method where participants are presented with some objects, and 
then asked to self-report perceived actions and feedback [38, 62, 75]. 
Our method follows this approach where afordance perceptions 
are elicited using a rating scheme. We hypothesize that afordance 
perception is a complex process where multiple mechanisms can 
be fexibly employed. In particular, building on previous work and 
our theory, we focused on three mechanisms: 

• Feature Comparison: Here, it is assumed that body-relative 
features drive our afordance perception, as claimed by the 
ecological perspective. That is, users compare features of 
an object (shape, size, texture, structure, etc.) to their own 
features (fnger length, hand size, etc.) to decide what actions 
are allowed and what afordances are provided. 

• Recognition: We use visual characteristics and details to 
identify afordances of objects. Here, attributes of the actor 
or agent are not considered that essential. 

• Motion Planning: We simulate possible motor actions to 
fnd out which have the highest probability of succeeding 
when interacting with a widget. 

4.1 Participants 
Twenty-six (26) participants (15 masculine, 10 feminine, 1 chose not 
to disclose), aged 21 to 33 (mean = 27.41, s .d . = 4.85), with varying 
educational backgrounds, were opportunistically recruited. In the 
context of the COVID-19 pandemic, the experiment was carried out 
in accordance with local health and safety protocols. Participants 
reported normal or corrected vision and no motor impairments. 
The same set of participants also took part in the second study, 
presented in the next section. Note that two participants failed 
to follow the instructions of Study 2, and their data was removed 
(see subsection 5.2 for more details). In the following, we consider 
only the remaining twenty-four (24) participants. Each study took 
under 30 minutes, and the total duration was less than an hour per 
person. Participation was voluntary and under informed consent; 
participants were compensated with a movie voucher (approx. 12 
EUR). 

4.2 Material 
Five objects were 3D-printed for the study (Figure 2). These were 
grouped into two sets of two interactive objects (widgets) and one 
additional target object. Set A consisted of a rectangular pressable 
widget (similar to a button) and a pseudo-circular rotary widget 
(similar to a dial). Set B consisted of a rectangular rotary widget and 
a pseudo-circular pressable widget. The fnal object (“target”) was 
circular and non-interactive. Each widget consisted of a base and a 
handle. The dimensions of the base was consistent across widgets 
(2.3cm × 2.3cm × 0.8cm). The circular handles had a diameter of 3 
cm but varied slightly in their exact shape. The square handle had 
dimensions of 1.5cm × 1.5cm. The objects were presented to the 
participants on a desk in front of them. 

4.3 Procedure 
The study consisted of two rounds. Each round had a training phase 
followed by a testing phase. 

4.3.1 Training phase: One set of two widgets (A or B) was pre-
sented; participants were invited to interact with them to discover 
the right ways of operating them. We then asked them to provide 
the action(s) each object enabled to confrm that they had discov-
ered the correct one. Note that we avoided mentioning the term 
“afordances” to prevent varying interpretations and bias between 
participants. 

4.3.2 Testing phase: After interacting with a set of two widgets, 
participants were presented with the round-shaped target object 
(Figure 2-Target), but asked to not interact with it. Instead, they 
were asked to self-report the action(s) this object would allow, 
demonstrate these action(s) through mid-air gestures, and explain 
them in their own words. A list of fve possible actions1 

(press, 
rotate, pull, slide, tilt) were presented, and participants were asked 
to rate their afordance perception on a 7-point Likert scale for each; 
a rating of 1 meant that they strongly disagreed that the action was 
supported and 7 meant that they strongly agreed. 

In the second round of the study, these two phases were repeated 
but with a diferent set of two widgets (B or A). The presentation 
order of widget sets was counter-balanced between participants. 

4.3.3 Semi-structured interview: After the two rounds, participants 
were asked to describe, in as much detail as possible, their process 
for making judgments about the perceived action(s) for the target 
object they encountered in both rounds. 

4.3.4 Qestionnaire: Next, we presented them with the three can-
didate mechanisms (feature comparison, recognition, motion plan-
ning), along with simple explanations for each, and asked them 
to rate their relevance during perception tasks on a 7-point Likert 
scale; a rating of 1 signifed that they strongly disagreed that the 
mechanism played a role during their tasks, while 7 meant they 
strongly agreed that the mechanism played a vital role. They were 
also requested to provide a rationale for their ratings. 

4.4 Result: Relevance of mechanisms for 
afordance perception 

We analyzed participants’ ratings for each mechanism and their 
responses in the open-ended interviews. The median values for the 
feature comparison, recognition, and motion planning mechanisms 
were 4 (IQR = 5.25, mean = 4.17, s .d . = 2.25), 7 (IQR = 0.75, 
mean = 6.60, s .d . = 0.77), and 7 (IQR = 1.75, mean = 6.21, s .d . = 
1.03), respectively. A Friedman Test showed statistically signifcant 
diference between these mechanisms (χ2(2) = 22.694, p < 0.001). 
A post hoc analysis with Wilcoxon Signed-Rank Test was conducted 
with a Bonferroni correction, and the result showed that the feature 
comparison mechanism was reported to be the least applicable 
(statistically signifcant) compared to the recognition mechanism 
(Z = −3.644, p < 0.001) and the motion planning mechanism (Z = 
−3.218, p = 0.001). The diference between recognition and motion 
planning was not statistically signifcant (Z = −1.768, p > 0.05). 

1
These fve actions were identifed during a pilot study with 5 participants. During 
similar tasks, these were the most frequently reported actions. 
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Set A

Set B

Target

Target

Figure 2: In Study 1, participants interacted with a set of widgets (training) and were then asked how they would interact with 
a novel widget (testing). We manipulated the widget sets (A or B) with which they interacted in the training phase. Set A: the 
round-shape (right-hand side) object afords rotation, and the rectangular (left-hand side) object afords pressing. Set B: the 
round-shaped (right) object afords pressing while the square object (left) afords rotation. The target object: the one which 
participants were asked not to interact with but just report the afordance in the “testing phase”. 

Some participants stated that the physical features of the target 
object were very similar to everyday objects they had used before, 
so they do not need to consider the feature comparison mechanism 
as much: “I have considered the size and features, but it’s very quick 
and automatic because the shape and dimension are very common. 
Most of my thoughts are on considering what it is and what is the right 
action to do.” (P17). Meanwhile, the other two mechanisms received 
high scores, indicating that most agreed with their relevance for 
afordance perception. 

Feature Comparison: Despite receiving a lower overall score, 12 
participants mentioned their mental process involved making body-
relative feature comparisons, indicating it was useful, but just not 
as much as the other mechanisms. P14 mentioned: “The size of the 
top part (handle) is more or less matched with my thumb’s size, so 
it probably is designed for pressing or tilting”, and P20: “I think it 
can’t be pulled because the gap between the object (the handle) and 
the table is too narrow for my fngers to squeeze in”. 

Recognition: 20 participants reported using the recognition-based 
approach. Many (15) mentioned the structure and the round shape 
of the target object directly reminded them of the previous wid-
get sets. Many participants (20) mentioned that the target object 
reminded them of other round widgets they had encountered in 
daily life: “It is very similar to a widget I have seen on a radio or a 
microwave.” (P15). “It is a button I see a lot on diferent machines, so 
the most likely action to me is pressing-down.” (P16). 

Motion Planning: 12 participants reported using motion planning: 
“When I see the object, I instantly imagine pushing it and rotating it 
(meanwhile making the gesture in mid-air), so I conclude that it has 

the possibilities of these motions” (P1). Some commented imagining 
motions to eliminate infeasible actions: “I tried to press it in imagi-
nation, but it seems not pressable. I can sort of imagine pushing and 
getting stuck, so I gave a lower score”. 

4.5 Result: Changes in afordance perception 
during the study 

We looked at how perceived afordances changed as the study 
progressed and participants encountered diferent widgets. The 
plots in Figure 3 summarize the results. A more detailed analysis 
for each action follows. 

Press action: For the perceived press action on the target object, 
Wilcoxon Signed-Rank Test showed statistically signifcant difer-
ence between set A and set B (Z = −2.273, p < 0.05). The trend 
was consistent regardless of the presentation order of the two sets. 
This shows that recent interactions with other objects (training 
phase) infuence the afordance perception with a new object. 

During the open-ended interviews, we probed to identify pos-
sible reasons. 10 users reported changing their rating of the press 
perception guided by the recognition mechanism. That is, upon see-
ing an object similar to the ones they interacted with, they recalled 
the nearest reference image (the round-shape object in set A or 
set B). P1 mentioned: “The object (target) is round, so I link it to 
the previous round widgets that I have tried with. If the round thing 
ofers rotation this time, I will think this one (target) is rotatable. If 
the previous round thing ofers press, I also tend to think maybe it 
(target) also can be pressed.” 7 users attributed their change in press 
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Figure 3: Study 1 shows that the reported afordances of a target widget change when the training widgets change. The red 
crosses mark outliers, which are defned as beyond 1.5 * IQR +/- Q3/Q1. The one-star (∗) symbol indicates p < 0.05 and signifcant 
diference. (a) Afordances reported for the target widget on Round 1 and Round 2. (b) Afordances depending on the preceding 
widget Set. 

ratings to motion planning. That is, upon seeing a similar object, 
their planned motions followed the previous interactions in set A 
and set B. P3: “(In the second round,) I learned that the round shape 
can be pressable. So when I saw the last thing (target), I directly imag-
ined and wanted to press it. That imagination (pressing it) happens 
only now. I did not think of it in the previous round (interacting with 
set A).” 

Pull and slide actions: These actions had consistent ratings be-
tween Set A and Set B. We further examined the ratings for these 
two actions based on the overall time progress (i.e., between the two 
rounds) regardless of the widget sets. Wilcoxon Signed-Rank Test 
showed a statistically signifcant diference between the perceived 
level of “pull” in the frst round and the second round (Z = −3.355, 
p < 0.05), indicating the pull perception decreased over time. The 
perceived level of “slide” exhibited a similar trend (Z = −2.14, 
p < 0.05). This shows as participants gained experience, upon not 
observing these actions with any of the widgets during interactions, 
their perception or belief about the presence of these afordances 
reduced over time. In P5’s words: “After interacting 2 objects, I still 
consider pulling a little, and imagine if it’s possible to do. But after 
experiencing four widgets and learning there are not pulling there, I 
just stopped to believe that is an option. I don’t think of this action or 
try to simulate it anymore.” 

Rotate and tilt actions: There was neither a statistically signifcant 
diference between the two widget sets nor between the round for 
these actions. This can likely be attributed to the target object 
showing a clear hint of rotation as its shape is very aligned with 
other rotating objects, which participants have encountered during 
their everyday interactions, and not showing any indication of 
being tiltable due to its shallow depth. 

4.6 Summary 
To answer RQ1, we observed that users employ a combination of all 
three mechanisms, although motion planning and recognition tend 

to play more important roles. Addressing RQ2, our statistical analy-
sis revealed the importance of interactions for changing or adapting 
the perception of afordances. From our qualitative analysis, we 
learned that this change could be attributed to motion planning and 
recognition. Findings from this study ofer promising evidence for 
the existence of our theory during afordance perception tasks. To 
summarize, study results favor the existence of our theory, and il-
lustrate the process of how motion-planning (RL-based afordance) 
leads to afordance formation and adaptation through interactions. 

5 STUDY 2: ADAPTING AFFORDANCE 
PERCEPTION WHEN WIDGETS CHANGE 

The second study seeks to understand how people adapt their per-
ception of afordances when widgets change dramatically or behave 
unexpectedly. We asked participants to frst identify allowed actions 
(afordances) on a “deceptive widget”, which appeared to be a slider 
but, in fact, only allowed button-like press actions. Following this, 
they could perform a single interaction to verify if their perception 
was accurate (Figure 4). This identifcation and interaction could be 
repeated until they correctly identifed the widget. We hypothesize 
that users can adapt and update their afordance perception under 
such circumstances through motion planning and reinforcement 
signals (success/failure) during an interaction. If an action leads to 
a failure signal (e.g., attempting to slide the handle but the handle 
does not move), the user updates the motion plan in the next iter-
ation, and the detected afordance is also updated. Conversely, if 
an action leads to a success signal (attempting to press the handle 
and successfully translating it downwards), the user determines 
the afordance accordingly. 

5.1 Material 
A deceptive widget that visually resembled a slider but operated 
like a button was 3D-printed. The only action allowed by it was a 
press down on the handle. The base of the widget was 8.5 cm × 2.5 
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Figure 4: In Study 2, participants were shown a “deceptive widget” and asked to (a) identify what actions they perceived it to 
allow, following which they could (b) perform a single interaction with it to verify their perception. 

cm × 1 cm, and the handle was 1 cm × 3 cm × 0.4 cm. The widget 
was placed in horizontal orientation, on a desk, at a distance of 15 
to 20 cm from the participant. The widget and setup is illustrated 
in Figure 4. 

5.2 Method 
During the study, a round consisted of two phases: identifcation 
and interaction (Figure 4). 

5.2.1 Identification Phase: At the start of each round, participants 
were asked to identify and report the most likely action allowed by 
the widget without making any physical contact. If they perceived 
multiple actions, they could mention all of them. In addition, they 
were asked to frst openly describe their mental process of making 
the judgment. Finally, we asked them to rate the relevance of each 
of the three afordance mechanisms for action identifcation on 
a 7-point Likert scale, along with follow-up questions to better 
understand the rationale behind their ratings. 

5.2.2 Interaction Phase: Here, participants were asked to interact 
with the widget by taking the most likely action they had identifed 
in the previous phase without making other movements. The par-
ticipants were requested to immediately inform the experimenter 
if they performed more than one action. The movements were fully 
recorded by cameras which were set in a short distance, and all 
the videos were examined afterward for verifcation. Two partici-
pants failed to follow the instruction and performed more than one 
movement in one round. Their data was consequently removed. 

5.2.3 Termination: Participants could complete as many rounds 
as they felt necessary to confdently identify the correct action 
allowed by the widget. They could also stop without identifying 
any action if they determined there were none allowed. 

5.3 Result: Change in Afordance Perception 
We frst analyzed the perceived afordances and their change across 
diferent rounds. On average, participants completed 3.17 rounds 
(s .d . = 0.64, median = 3) before stopping exploration of further 
possible actions (7 participants took 4 rounds, 14 took 3 rounds, and 

3 took 2 rounds). 23 out of 24 participants successfully perceived 
the “press” action within 2 to 4 rounds, while one participant did 
not identify any possible action. 

In the frst round, among the 24 participants, 22 perceived “slide” 
to be the most probable action, 1 perceived “rotate”, and 1 “pull”. 
Because every participant’s frst action led to failure, all of them 
decided to continue to the second round. Here, 7 participants con-
sidered “press” as the most possible action. 11 participants selected 
“rotate”, 4 selected “tilt”, and 2 chose other actions. 3 participants 
that correctly identifed “press” concluded after two rounds. 21 
participants attempted a third round, including 4 that had already 
discovered “press” in the second round. 9 additional participants 
identifed “press” here. One participant failed to identify any possi-
ble actions and concluded that there was no action allowed by this 
object. All 7 participants that attempted the fourth round discovered 
the “press”. 

5.4 Result: Self-reported Mechanisms 
In addition to identifying perceived actions, participants also self-
reported the mechanisms they employed for identifying and adapt-
ing their afordance perception. Figure 5 provides an overview of 
the results. It is evident that the three mechanisms were similarly 
used in the frst round. However, once the participants interacted 
with the widget and noticed that their perception was inaccurate, 
the relevance of recognition and feature comparison consistently 
dissipated and motion planning gained prominence. Eventually, 
motion planning was the most relevant mechanism at play when 
identifying and adapting perception under uncertainty. 

Since only seven (7) participants reached the last round, we 
analyzed the data of only the frst three rounds with Friedman 
Tests. If there was a statistically signifcant diference, we used 
Wilcoxon Signed-Rank Tests with a Bonferroni correction for post 
hoc analysis. In the frst round, there was no statistically signif-
cant diference between the reported mechanisms (χ2(2) = 10.204, 
p > 0.05). In the second round, there was a statistically signifcant 
diference between the mechanisms (χ2(2) = 14.075, p < 0.05). 
Motion planning had the highest rating (median = 7, IQR = 1), 
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Figure 5: The relevance of each mechanism in the User Study 
2. The red crosses mark outliers, which are defned as be-
yond 1.5 * IQR +/- Q3/Q1. Results suggest that users were ini-
tially relying on all three mechanisms but shifted to motion-

planning as they gained more experience with the widget. 

followed by feature comparison (median = 4, IQR = 5) and recog-
nition (median = 5, IQR = 3.5). Post hoc analysis showed a statisti-
cally signifcant diference between motion planning and feature 
comparison (Z = −2.623, p = 0.009) and between motion planning 
and recognition (Z = −2.534, p = 0.011); the diference between 
feature comparison and recognition was not statistically signifcant. 
In the third round, there was again a statistically signifcant difer-
ence between the mechanisms (χ2(2) = 26.471, p < 0.001). Motion 
planning had the highest rating (median = 7, IQR = 1), followed 
by feature comparison (median = 4, IQR = 4) and recognition 
(median = 4, IQR = 3). Post hoc analysis showed a statistically 
signifcant diference between motion planning and feature com-

parison (Z = −3.208, p = 0.001) and between motion planning and 
recognition (Z = −3.131, p = 0.002); the diference between feature 
comparison and recognition was not statistically signifcant. While 
we did not run statistical analysis for the data in the last round due 
to too few data points, we can observe a similar trend that motion 
planning was generally more used. 

Open-ended comments shed further light on how participants 
applied the mechanisms during the task. In the frst round, most 
participants (22) reported perceiving the “sliding” action based on 
the recognition mechanism. As participants noted: “It is a slider” 
(P5), “Reminds me of the slider on a panel to control volume” (P20). 
Similarly, many participants (15) recalled using motion-simulation 
as a strategy. As P17 said: “The motion of holding it and pushing (slid-
ing) it along the direction just came to my mind naturally.” However, 
after failure in the frst round, participants found the recognition 
mechanism to be less useful because the visual details of the decep-
tive widget did not strongly resemble objects other than a slider. 
As P1 said in the second round: “After the previous fail, if I only 
look at the handle part, it starts looking like a widget for pulling. 
But the whole object still does not give me that clue what it is or 
what should I do.” P19 gave a blunt response after decreasing the 
recognition score from 7 to 2: “Because it doesn’t work. I thought it’s 

a slider by its look, but it isn’t.” Users responded that the motion 
planning mechanism guided them to discover and adapt actions. P2 
mentioned in round 2: “Even though it doesn’t look like a button or a 
lever to me, I can still imagine pressing it or pulling it. It’s coming not 
from knowing what it is, but more like I can see that motion possible.” 

5.5 Summary 
This study assessed how users adapt their afordance perception 
when they are presented with novel objects that depart from their 
expectations and the role of diferent mechanisms during this adap-
tation process. We observed that initial perception was guided by 
all three mechanisms. However, upon failure, participants adapted 
quickly, enabling them to successfully identify the appropriate af-
fordance. This adaptation was primarily guided by motion planning 
and the feedback (reinforcement signals) they received during in-
teractions. 

6 A VIRTUAL ROBOT MODEL 
Our studies provide evidence for the theory that human perception 
of afordance involves reinforcement learning where the motion 
planning mechanism plays a key role. A distinct beneft of our 
approach over previous theories of afordance is that it can be 
implemented as a generative computational model that can be 
subjected to tasks where its afordance-related abilities are tested. 
The theory and the model are linked via the theory of reinforcement 
learning in machine learning [60]. Following this methodology, we 
built a computational model and demonstrated it on a robotic agent, 
which faced a similar task as in our study 2. In this section, lower 
case reinforcement learning refers to the cognitive mechanism while 
upper case Reinforcement Learning (or RL) refers to the machine 
learning method. For an introduction to RL, we refer readers to 
Sutton and Barto [60]. 

6.1 The Interactive Widgets Task 
Before introducing our afordance model, we briefy describe the 
task that was used to develop the theory and the model. Similar 
to our empirical studies, it is motivated by a real-world scenario 
where people come across unknown objects, widgets, or interfaces 
in their daily lives and learn or adapt how to interact with them. 

In this task, we present a virtual robot with a set of randomly 
selected interactive widgets. As shown in Figure 6, the agent is 
presented with a widget at a random location and with a randomly 
sampled shape and size. Upon successfully reaching the goal state 
of the widget, it receives a reward signal. Here, the goal state refers 
to the correct manipulation of the widget. For example, a button 
widget has a goal state of being pressed down, a slider with a goal 
state of the handle being moved from left to right. The goal for 
the agent is to learn the right afordance (action allowed) through 
interactions with the widget. As a novel widget might be uncon-
ventional (similar to the widget in study 2), the agent should be 
able to adapt its perception appropriately. 

6.2 The Virtual Robot 
We implemented a virtual robot with an arm whose characteristics 
are similar to the human arm. As shown in Figure 6, the robot has 
a shoulder mounted in a static 3D position above a table, and the 
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upper arm (24 cm long) is connected to the shoulder. An elbow 
joint connects the upper arm to the forearm (27 cm). The other 
end of the forearm is the wrist and two fnger-like contact points 
(6 cm each). The entire robot is controlled by 7 virtual motors. A 
motor can exert a force between 0 to 200 units in two possible 
directions. Each motor controls one degree of freedom: two motors 
control the shoulder movement, one motor controls the elbow, one 
motor controls the rotational movement of the forearm, two motors 
control the wrist, and the fnal motor controls the grip of the two 
fngers. 

6.3 Interactive Widgets 
We implemented two types of common widgets (Figure 7) – buttons 
and sliders – each associated with a particular action. A button 
afords the “press” action while a slider afords “slide”. In addition, 
we implemented a “deceptive widget” similar to that in our study 
(section 5), which appears as a slider but operates as a button. 

Each widget has two parts: the handle and the base. The handle 
is the part the agent interacts with; we designed handles as cuboids 
with varying dimensions. The base is an immovable part fxed on a 
table. 

(1) Buttons (Figure 7-a): Every button has a handle with a square 
footprint (equal width and length). The exact size of the 
width and length is randomly selected during task trials 
(∈ [3cm, 5cm]). The height of the handle is set to 3cm. The 
base is also square, and has a dimension 1 cm larger than 
the selected handle width and length to provide padding. 

(2) Sliders (Figure 7-b): Slider handles have a rectangular foot-
print, with their length being larger than their width, similar 
to sliders found in the real world. During trials, the length is 
∈ [4cm, 6cm] while the width is ∈ [1cm, 2cm]. The height of 
the handle is set to 4cm. The base of the slider is rectangular, 
and has a length 1 cm larger than the handle length and 
width 10 cm larger than the handle width. 

(3) Deceptive Widget (Figure 7-c): The deceptive widget appears 
similar to a slider; its handle is 2.5cm(width)×5cm(lenдth)× 
4cm(heiдht), and the base is 12.5cm(width) × 6cm(lenдth). 
The height of the handle is set to 4cm. 

At the start of each trial, widget dimensions are sampled, and the 
origin of the widget is randomly positioned within a 5cm ×5cm area 
on the table to prevent the agent from learning absolute positions. 

6.4 Modelling Assumptions 
We here describe the main ideas in how we implemented the the-
oretical assumptions in Section 3. The description requires some 
familiarity with RL. 

First, we assume that the robot’s adaptive behavior results from 
a solution to the Markov Decision Process (MDP) (see below). MDP 
is a mathematical framework to formulate RL problems; specifcally, 
multi-step, sequential decision-making problems where rewards 
are deferred. A more formal defnition of our MDP will be provided 
below. Within this framework, we view afordances as a control 
problem, which maps the percepts (of the observed environment) to 
possible motor actions (a possible motion) through a value estimate 
(rewards). This links afordance to policy models. 

How to learn a policy model is a central question for Reinforce-
ment Learning. If an action leads to a bad outcome (lower rewards), 
the policy model will decrease the probability of doing the same 
action in the future. If an action leads to a good outcome (higher 
rewards), the policy model will increase the probability of taking 
similar actions. Via this process, afordances can be updated based 
on experience with diferent types of widgets. 

We further assume that people can simulate possible motions in 
their minds and categorize them, essentially giving them labels. Our 
implementation assumes that the agent recognizes types of actions 
based on similarities in movements. For example, all motions that 
end with wrist-rotation movements will be classifed as one type of 
action, and those that end with a fnger poking downward will be 
seen as the same type of action. In our model, we assume that these 
labels are given by an outside source. This allows implementing 
recognition with supervised learning. For instance, all successful 
motions to activate a button are labeled as “press”. 

The proposed computational model is distinct from all the ap-
proaches that have been reviewed in subsection 2.3. The agent is not 
detecting the afordance purely based on visual features (recogni-
tion) [14, 45]. Instead of trying out the pre-trained actions on target 
objects [44] or learning afordances at the level of primitive actions 
[39], our agent searches for the optimal policy via exploration-and-
exploitation enabled reinforcement learning. Thus, the agent is 
able to develop novel action plans and fne-tune the learned actions 
for each object. 

6.5 Model Details 
We model the interaction of the agent with an object as a Markov 
Decision Process (MDP). Here, the agent takes an action a ∈ A to 
interact with its environment, causing the environment’s state 

′
to change from s ∈ S to new state s ∈ S with a probability 

′ T (s, a, s ′) = p(s | s, a). The reward function R specifes the proba-
bility R(s, a) = p(r | s, a) of receiving a scalar reward r ∈ R after 
the agent has performed an action causing a transition in the en-
vironment. The agent acts optimally and attempts to maximize its 
long-term rewards. It chooses its actions by following a policy π , 
which yields a probability π (s, a) = p(a | s) of taking a particular 
action a from the given state s . An optimal policy π ∗ maximizesÍ
the total cumulative rewards R = E[ γ t −1r t ] where γ ∈ (0, 1) is 
the discount factor. In essence, a model following an optimal policy 
selects the action that, in the current state of the environment, max-

imizes the sum of the immediate and discounted future rewards. 
The MDP formulation for our model and task is as follows: 

State s . A state encapsulates properties of the agent and the envi-
ronment, which can be observed by the agent: 

(1) Proprioception: The joint angles and angular velocity of all 
the joints of the arm. 

(2) Widget dimension: The three dimensions (width, length, and 
height) of the widget handle, and the two dimensions (width, 
length) of the base (the base is assumed to be no height). 

(3) Widget position: The 3D positions of the center of both the 
handle and the base. 

(4) Widget velocity: While the base is fxed, the handle is mounted 
on a virtual spring (for buttons) or rail (for sliders), allowing 
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Figure 6: We develop a computational model of our afordance theory. It is implemented in the MuJoCo physical engine, and 
enables a virtual robot to interact with widgets. 
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Figure 7: The virtual robot interacted with diferent types of widgets: (a) Button widgets; (b) Slider widgets; and (c) A deceptive 
widget that resembles a slider but only allows push actions similar to buttons. 

it to move. The velocity of the handle is encoded in the state 
to allow the agent to perceive the efects of its actions. 

Action a. An action is a motion performed by the robot at a single 
time step. As the agent has 7 joints (degrees of freedom), an action 
is represented as a vector with 7 values, each representing the force 
applied by a motor on one joint. An interaction with a widget is 
composed of a sequence of such actions. 

Reward R. When an action a is taken at a time step, the environment 
(in state s) generates a reward r (s, a). The reward is composed of 
three parts: distance penalty, movement penalty, and task comple-

tion reward. The distance penalty is set to be the distance from the 
center of the agent’s fngers to the center of the widget handle, mul-

tiplied by a linear factor and constrained to be a value ∈ [−0.01, 0] 

(the closer to the target, the less penalty received). The value is set to 
be relatively small to allow stable learning and avoid over-guiding. 
The movement penalty is the average joint angular velocity, multi-

plied by a linear factor and constrained to be ∈ [−0.01, 0] (the faster 
or more you move, the more penalty received). This is analogous to 
efort or strain exerted when we make motor movements. Finally, if 
the widget is successfully triggered (i.e., the button is pressed 2 cm 
downward or the slider is moved 4 cm toward the target direction), 
the agent receives a task completion reward of value 1, otherwise 0. 

Transition T (s, a, s ′). Taking actions results in state transitions. In 
our environment, transitions are deterministic; that is, given initial 
state s , taking an action a always results in the next state s ′ with 
probability 1.0. 
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Discount λ. The discount rate is set to be 0.99 throughout the whole 
experiment, as it is a generally recommended value for similar 
robotic applications. 

6.6 Implementation 
The task environment was implemented within the Mujoco physical 
simulation engine2 

[64], which is commonly used for robotic simu-

lation and reinforcement learning applications. Our MDP agent was 
trained using Proximal Policy Optimization (PPO) [54], a state-of-
the-art Reinforcement Learning algorithm. For technical details 
and hyperparameters, refer to the supplementary material. 

6.7 Training with Common Widgets 
We trained our agent to interact with widgets that had distinct 
afordances. To evaluate whether it could then adapt its afordance 
perception through reward signals, we tested it with a novel widget. 
This widget is analogous to the widget used in our second empiri-

cal study (section 5), which investigated how humans adapt their 
afordance perception under uncertainty. 

We trained our model to interact with the two widget types 
described previously – buttons and sliders. The training process is 
shown in Figure 8-a. After training, in 1000 trials with each widget, 
the agent interacted with the button (by pressing it down) with 
a success rate of 91.3%, and with the slider (by sliding it in the 
target direction) with a success rate of 94.5%. This ofers promising 
evidence for the agent’s ability to interact with objects through 
reward signals. 

Next, we labeled 1000 successful trials with each widget with 
their corresponding afordance labels: “press” for the button and 
“slide” for the slider. This dataset was used to train an afordance 
classifer that can assign labels to motions. We randomly sampled 
80% of the data for the training set, 10% for validation, and 10% for 
testing. The motion classifer achieved 85.8% validation accuracy 
and 88.1% testing accuracy, indicating high-quality recognition. It 
is challenging to achieve higher motion recognition due to some 
small overlap in motions that can occur during interactions with 
diferent types of widgets. While pressing a button and sliding a 
slider are generally diferent actions, there are some motions that 
could successfully trigger both buttons and sliders. 

6.8 Testing with the Deceptive Widget 
After training our model to interact with common buttons and 
sliders, we introduced it to the deceptive widget. Despite its resem-

blance to a slider, this test widget has the afordance of a button – 
press actions provide positive rewards. The agent interacted with 
this widget and continued learning through these interactions. Dur-
ing these interactions, each action was labeled with a corresponding 
afordance label using the pre-trained classifer. 

6.9 Results 
The results are presented in the Figure 8-b and c, which shows the 
progress in the agent’s afordance perception. 

We can see that the agent initially perceived higher sliding af-
fordance, resulting in corresponding unsuccessful actions and low 
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success rates. However, through interactions, the agent was able 
to adapt and learned to perceive the press afordance. As seen in 
the fgure, after 20 simulated time units, the press afordance is 
dominant. However, the agent’s success rate for performing press 
actions does not immediately improve; this can be attributed to 
the diference in physical properties of this widget compared to 
previously learned button widgets. Recall from our empirical study 
(section 5), human participants also exhibited similar behavior when 
perceiving afordances. They initially indicated “sliding” being the 
primary afordance for the widget; after some interactions, they 
adapted and could perceive the press afordance instead. 

6.10 Summary 
The results show that driven by reinforcement learning, our 
robot agent successfully interacts with diferent widgets, discovers 
correct afordances, provides labels for them, and adapts its percep-
tion when it encounters unfamiliar circumstances as humans do. 
While the results largely aligned with the trend in human data, the 
efciency of adaptation is lower. The potential solutions to mitigate 
the diferences are discussed below. 

7 DISCUSSION 
How do we learn and perceive afordances? Though the concept of 
afordance has been previously recognized and modeled using eco-
logical and recognition approaches, the question of how afordances 
are formed was left unanswered. The paper tackles this grand ques-
tion by proposing a novel theory based on reinforcement learning. 
We argued that afordances are learned via trial-and-error when re-
inforcement signals are present, and continue to adapt in everyday 
interaction as we encounter diferent types of interfaces. Our results 
are in line with the current theory in reinforcement learning, and 
suggest how we can generalize afordances to previously unseen 
interfaces. Through exploitation, we can intuitively “just see” or 
perceive the right afordances and act accordingly. When this fails, 
through exploration, we can resort to motion planning in mind: 
that is, we can simulate alternate motor actions and assess their 
success. This exploration process, which is more efortful, works 
similar to model-based RL in machine learning. This result ofers a 
neat synthesis of previous theories. In particular, the body-relative 
features that ecological psychology underlines are essentially our 
afordance percepts: they map observed features to estimated util-
ity in operating the widget with one’s own body. Our view is also 
compatible with the recognition-based approach. We believe that 
categorization of afordances is the key to users’ ability to talk and 
reason about afordances, which facilitates their learning. 

An interesting comparison is between our model’s performance 
and human performance. Human participants adapted both motion 
and afordance perception much faster than our robotic model. The 
model took nearly 40 policy updates to achieve a 90% success rate 
and perceive press afordance with a probability of 80%. In contrast, 
human participants achieved the same results within 2 to 4 trials. 
Based on the analysis done, we identify three reasons that lead to 
this diference. First, participants in our studies have had extensive 
experience of interacting with everyday objects and widgets similar 
to those presented in the studies; in contrast, the virtual robot had 
only limited experience via training. Second, participants leveraged 
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Figure 8: The virtual robot model successfully learned correct afordances by interacting with widgets. Through interactions 
and adaptation, it achieved a high success rate and labeled the afordance correctly. (a) The accuracy over time during the 
training phase with basic widgets. (b) The accuracy in the testing phase with a “deceptive widget”. At the time 0, the testing 
deceptive widget was introduced. (c) Adaptation in afordance perception over time during testing. 

all three mechanisms we listed in the user study to help identify 
the correct afordance. However, our model relied exclusively on 
motion planning, and the policy adapted to the reinforcement sig-
nal provided in each round. Third, humans have a striking ability 
to learn and adapt to new environments or concepts from a limited 
number of examples, an ability termed meta-learning or learning to 
learn [74]. This ability contrasts strongly with the machine learning 
methods used in our model, which typically require many interac-
tions to reach a similar success rate. Nonetheless, our model shows 
a trend similar to human afordance formation and adaption. As 
a future extension to our model, we will consider an integrated 
model that can utilize multiple afordance mechanisms and will 
apply more advanced reinforcement learning techniques, such 
as meta-reinforcement-learning for more efcient learning. 

Based on its ability to discover and learn afordances, our com-

putational model has practical applications for design tasks. Such 
a model can enable designers to evaluate the usability of novel 
design instances. It could answer questions such as “what afor-
dances would a user perceive when interacting with this new design?” 
and “how would a user adapt their perception to a new design can-
didate?” For example, an agent could be trained to interact with a 
wide variety of door handles that require “turning” motions. Upon 
encountering a novel doorknob design, the agent could reveal the 
level of perceived “turn” afordance by creating a set of motions 
and then classifying them, thus enabling the designer to identify 
whether the new design would be intuitive or not. As the model also 
adapts with experience, it could reveal how much time users might 
require to adapt to a novel design instance. Furthermore, by varying 
the physical properties of the robot agent, such as its dimensions, 
degrees of freedom, or other motor capabilities, it could facilitate 
usability and accessibility testing for a range of user groups. 

Finally, our work aims to provide a common ground for a better 
understanding of afordance in HCI. For instance, false afordances 
and hidden afordances [19, 76] are well-known concepts that lead 
to poor design, but why do they exist and how to avoid them are 
unclear. According to our theory, users learn to associate certain 

action plans to certain visual cues from past experience. Poor de-
signs (with false or hidden afordances) are the ones where planned 
(assumed) motions do not lead to predicted reinforcement signals. 
With our theory, one can further reason the quality of a design 
based on the planned motions and reinforcement learning. Our 
theory further provides a shared formation process compatible to 
all the classes of afordances. No matter whether an afordance is 
simple [65] (a ball afords grasping), complex [19, 65] (a scrollbar 
on a monitor afords scrolling with a mouse), or social or cultural 
[52], they are all acquired via the same mechanism – reinforcement 
learning. Lastly, our theory sparks an interesting discussion for the 
future: the disputed notion of natural interactions [69] or natural 
user interfaces [37]. In our view, even perceiving the most natural, 
intuitive interaction possibility, such as a button pressing, is one 
that is discovered, learned, and constantly adapted with experience. 
To conclude, this paper studies the concept of afordance: a key term 
that was introduced to HCI decades ago. To date, due to the lack of 
a theory that explains underlying mechanisms and the formation 
process, the term has assumed varying interpretations and led to 
vague applications and implications. We anticipate that this paper 
will lead readers to rediscover afordance by shedding light on how 
we, as humans, rediscover and adapt our afordance perception. 
Our theory could establish a more actionable understanding of af-
fordance in design and HCI, and our model could bring afordance 
from a conceptual term to a usable computational tool. 

8 OPEN SCIENCE 
Anonymized data from the two user studies, the virtual robot model 
(MuJoCo), and the RL model (Python) will be released on our project 
page at http://userinterfaces.aalto.f/afordance. The supplementary 
material provides further technical details about the model imple-

mentation in subsection 6.6. 
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