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Figure 1: In interactive layout transfer, a draft (incomplete) layout is automatically transferred to the structure of a target
template selected by the designer. Transfer obeys pertinent design guidelines and canwarn about possible guideline violations.

ABSTRACT
During the design of graphical user interfaces (GUIs), one typical

objective is to ensure compliance with pertinent style guides, on-

going design practices, and design systems. However, designing

compliant layouts is challenging, time-consuming, and can distract

creative thinking in design. This paper presents a method for inter-
active layout transfer, where the layout of a source design – typically
an initial rough working draft – is transferred automatically using

a selected reference/template layout while complying with relevant

guidelines. Our integer programming (IP) method extends previous

work in two ways: first, by showing how to transform a rough

draft into the final target layout using a reference template and,

second, by extending IP-based approaches to adhere to guidelines.

We demonstrate how to integrate the method into a real-time in-

teractive GUI sketching tool. Evaluation results are presented from

a case study and from an online experiment where the perceived

quality of layouts was assessed.
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1 INTRODUCTION
A central challenge in the design of graphical user interfaces (GUIs)

is that there are several objectives and constraints expressed in a

number of documents and places, such as in design briefs, style

guides, design systems, and design examples. Ensuring that the

end-result is compliant with all of them is challenging. Design-

ers typically address this iteratively, creating drafts, comparing

them against requirements, improving the drafts, and so on. Even

when guidelines are explicitly specified and available, designers

face difficulties in ensuring compliance [26]. Moreover, professional

designers often need to ensure consistency within an ecosystem of

such requirements, and find a balance between general corporate
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identity and the particular project at hand [39]. Ensuring consis-

tency is a labour-intensive, time-consuming process which may

distract the designer from the primary goal of creatively exploring

the design space.

The starting point for our research is the observation that a

lot of the information needed for ensuring compliance already ex-

ists in known design examples. Designers routinely seek, curate,

and utilise design examples, or examples of known good designs,

in their work [14, 20]. However, because design examples are of-

ten scattered across different sources – across the internet and on

personal folders [16] – it may be practically hard to find relevant

examples. Further, even after identifying an example, designers still

require manual effort to transform the draft at hand while ensuring

that the final design adheres to all expected design principles and

organisation-specific rules. Our goal is a computational method that

can assist designers by exploiting design examples, in particular by

proposing automatically generated layouts that ensure consistency

with a user-specified example and compliance with requirements

like guidelines.

This paper contributes to the growing body of literature on

computational design methods that can aid designers in complex

tasks such as design exploration and refinement [6, 17, 20, 32, 40].

By mathematically formulating design objectives, and by using

learning- or optimisation-based approaches, these methods gener-

ate appropriate and diverse solutions. However, with few exceptions

(see Related Work), previous literature has considered design in

isolation – independent of other co-existing designs – when gen-

erating solutions. In addition, previous work on computational

retargeting has not addressed consistency and compliance as a

factor. This paper addresses the identified gap.

We propose interactive layout transfer as a novel approach for

generating layouts by exploiting known good designs. In layout
retargeting, a source layout is transferred to a target layout by

mapping the elements and visual properties [18]. Layout transfer

extends this in two ways. First, our approach requires no unambigu-

ous mapping between the source and the target. Our method finds

that mapping algorithmically. This extends the scope of layouts that

can be retargeted. Second, our approach also ensures adherence

to existing guidelines when transferring the layout. To sum up,

given a reference library (template designs), and a source (initial)
draft design, our approach first identifies most relevant existing

GUIs from the library by computing distances between designs. A

retargeted (final) design is constructed by transferring the elements

from the source design to the layout of the matching design.

In contrast to fully-automated approaches, our approach can

interactively support the designer. It enables designers to create

well-formed layouts simply by specifying a source and a target.

It helps the designer by also identifying and proposing suitable

targets. The outputs are aligned to specified guidelines, ensuring

consistency. In case guidelines are violated, the system can point out

the violations and suggest repairs. Throughout, designers retain

control over design solutions and can intervene to override or

modify the computationally generated results.

The computational approach we present in this paper extends

computational layout design methods based on integer program-
ming (IP). Recent literature has identified IP as a capable platform

Given a rough draft ① The system returns matching 
templates from the library ②

Sketch Design Assistant

1

2

Designer selects a template ③ to 
generate the transferred layout ④      

3 4

Finally, clicking the suggestion applies 
it to the current design ⑥

6

Figure 2: Workflow for interactive layout transfer, where a
draft design is transformed using a target layout.

for computational GUI design for several reasons [32]: As a mathe-

matical optimisation method, it guarantees an optimal solution to

the stated problemwhile adhering to constraints.When time budget

is more limited, IP can also generate a close-to-optimal solution. The

representation of layouts as decisions can achieve computational

performance suitable for interactive usage. IP methods can also be

defined to re-direct the search process – interactively – within a

feasible region [6]. The challenge in developing IP-based methods

is the mathematical formulation of objectives and constraints. Thus,

the approach complements supervised learning based approaches

that rely on human annotated datasets.

In the rest of the paper, after reviewing relevant literature, we

present our interactive style transfer method, and interaction tech-

niques to integrate it into design tools. We assess the efficacy of

our approach by conducting a crowd-sourced ratings study of gen-

erated layouts, and discuss preliminary results from a case study

conducted with a large ICT company.

1.1 Walkthrough
Our tool supports two novel use cases:

1. Search and transfer (Figure 2): The designer starts by creating or

selecting a rough draft as the source layout. The design assistant

finds the most similar layouts from a library of existing design ex-

amples, and displays them to in an example gallery. Upon selecting

a reference layout, the assistant applies the spatial structure of the

reference layout to the content of the source layout while following

design guidelines. The resulting retargeted layout is displayed to

the designer, who can then make further changes if required.

2. Validate and optimise (Figure 3): A designer can consult the design

assistant to identify any guideline violations in a source layout. The
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Figure 3: Workflow for layout validation and optimisation, where violations are identified and fixed.

assistant visualises these violations, and provides options to auto-

matically repair them. Given a single source layout, our algorithm

generates a layout suggestion according to the design system guide-

lines and aesthetic qualities with minimal changes to the source

layout. The resulting validated layout is displayed to the designer.

1.2 Problem Definition
The primary underlying computational problem for layout transfer

is defined as follows:

Given a source layout containing rectangular ele-
ments E, and given a library L of several different
existing designs, compute a new retargeted lay-
out comprising E by identifying and utilising
a suitable reference target layout from L while
adhering to the guidelines of the design system.

To address this problem, we identify the following objectives:

(1) Enforce structural consistency with the most relevant design

from the library L.
(2) Adhere to the guidelines of the design system.

(3) Ensure layout aesthetic principles such as alignment, sym-

metry, and packing.

In addition to the primary use-case of layout transfer, the above

objectives also enable standalone guideline verification and repair

for a source layout. Here, it is sufficient to apply objectives 2 and 3

only.

1.3 Scope of this paper
For the purposes of this paper, we will restrict ourselves to a specific,

constrained, and simplified characterisation of layouts in terms of

resolution, number of widgets, types, composition of layout in

header + content, etc. These restrictions can be relaxed (potentially

with some costs in terms of computational performance).

The techniques discussed in this paper can be applied for a

wide range of graphic design applications. Although the current

paper is restricted to desktop/mobile applications only, web-based

adaptation is also possible. It is quite standard to convert an existing

web page JSON layout format via JavaScript. Thereafer, the model-

based approach extends to self-adapting web GUIs such as [19].

Such web-based applications are then ideal platforms where all our

objectives 1, 2 and 3 can be applied directly.

2 RELATEDWORK
Our goal in this work is to provide interactive support to facilitate

the design of compliant UI layouts that follow specified style guides

and design systems and are consistent with design examples. Our

method extends prior work on computational approaches for UI

design, and style transfer and layout retargeting.

2.1 Promoting Consistency in Design
Consistency in design increases usability and acceptance of GUIs

[28]. Template-based design [7, 42] is a commonly used approach

to ensure consistency between designs. However, templates lack

flexibility and restrict designer freedom. Many toolkits and lay-

out managers [24] offer interactive aids like grid-snapping and

auto-alignment [17] to support the creation of layouts that fol-

low grid-based principles. While this promotes uniformity on the

elementary-level, it does not consider consistency between designs

and adherence to specifications. Apple’s Human Interface Guide-

lines [1] and Google’s Material Design [13] are two well-known

examples of design systems – documentations that provide detailed

guidance on creating consistent and usable GUIs across an ecosys-

tem [34, 35]. Integrated development environments (IDEs) such as

Xcode and Android Studio enable the development of GUIs that

follow these guides. However, these tools neither ensure that final

designs are compliant nor do they encourage consistency between

design examples – they instead rely upon the designer. As such,

these tools are passive in that they provide users with tools and

functionalities for carrying out design tasks, but they do not play a

role in achieving design results. Inspired by [27], we believe that

design tools can play a more active role in the design process by

employing computational approaches for UI design.

2.2 Optimisation for UI Design
Several prior works have investigated computational techniques to

assist designers during layout design. Constraint-based tools [2, 5,
12, 15, 31, 41] support specifying constraints, or rules, that elements

within a GUI needed to follow. This enables designers to specify an

initial design, which can be automatically adapted based on aspects

such as screen resolution or aspect ratio. While such an approach

is useful for responsive designs that rely upon designer-defined

constraints, it does not offer methods to ensure compliance with

given style guides, or to ensure consistency between designs.

Optimisation-based approaches have been applied to automati-

cally generate layouts from task specifications [9, 10]. While this
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can be beneficial for developers, requiring task specifications is ill-

suited for interactive design; further, while output designs follow

device constraints, they do not consider design consistency. More

recently, design tools have used optimisation to offer designers

interactive assistance during tasks such as poster design [30], menu

organisation [3], and wireframe sketching [40]. However, as they

often employ random-search based black box optimisation tech-

niques, they do not scale to larger problems and offer no compliance

guarantees.

Integer programming offers a promising method for solving

design problems with solution guarantees, and has been used for

varying problems such as menus, keyboards, and layouts [32]. Close

to our work, it has recently been used interactive grid-based layout

design [6]. While the presented system generated layouts that guar-

anteed qualities such as alignment and rectangularity, compliance

with explicit rules or design examples was not feasible. As such, pre-

vious works that have applied optimisation towards UI design have

treated each design task in isolation, and not considered compliance

between multiple designs.

2.3 Style Transfer and Layout Retargeting
Style transfer methods in computer vision achieve consistency by

applying image statistics of a reference image to a source image.

This has found applications in colour adaptation [33] and in transfer-

ring the overall style of portrait images [36]. Convolutional neural

networks (CNNs) were presented to transfer a painter’s artistic

style to natural images [11], which has inspired to further research

in neural style transfer to improve quality and expand the scope of

applications [22, 23, 25, 38]. By adding a structural component to

address UI details and usability, CNNs have been recently used to

restyle GUIs with artistic images [8]. A drawback of style transfer

using these techniques is that they primarily rely on image-based

visual features, and do not typically consider structural aspects. As

such, they are not suitable for transferring layouts between GUIs,

where component-level reorganisation is required.

In layout retargeting, the content of one design is reorganised

using the layout of an design. Retargeting has been used previ-

ously to, for example, generate new webpage designs from existing

examples [18], to increase familiarity of layouts [39], and to gen-

erate consistent remote control UIs [29]. Data-driven approaches

[21, 43] have been used to create layouts that are consistent with a

set of prior designs. However, previous methods require extensive

training data, rely on an exact mapping between source and target

layouts, can not consider style guides or design rules, and do not

support designer interventions during the retargeting process.

With layout transfer, our work contributes by addressing these

challenges by extending IP-based optimisation, and enables design-

ers to interactively ensure compliance with all design objectives,

and consistency with design examples.

3 APPROACH TO LAYOUT TRANSFER
This section discusses the logical tenets of layout transfer and detail

our approach to achieving the objectives as listed in Section 1.2.

3.1 Overview
Our method comprises four key elements: (1) A delta (∆) algorithm
that calculates the difference between two layouts, (2) a library
search that identifies the most relevant layout from L using the ∆
algorithm, (3) the core layout transfer model that segments a source

layout, identifies a suitable mapping with design examples, and

transforms it according to the layout of a matching example, and

(4) the guideline model that ensures elements follow component

guidelines, layout rules, and aesthetic principles. The layout vali-

dation case then only employs the guideline model on the source

layout to identify and repair violations.

Concepts. We describe a layout as a distribution of well-defined

elements on a configurable fixed-size canvas. This fixed-size layout

expectation is quite reasonable while doing UI layout (whether

web, desktop or mobile). Every element is defined in terms of its

position on the canvas (top-left coordinates), its size (width and

height), and its component type (button, input, chart, etc.). Further,

we require that the set of permissible component types is defined in

advance and semantically grouped, e.g., by their name (such as ‘Con-

tent/Text/Label’, ‘Content/Text/Paragraph’, ‘Content/Action/Button’,

‘Container/Card’, etc.). This naming structure follows the approach

inside the Sketch application to group component definitions in

related categories, and each element can only belong to a single

component. These component types are broadly classified into one

of three main categories, matching the first part of their name:

header, container, or content. We expect content components to be

always placed inside a container component. Header components

are always placed at the top of the canvas, which is computationally

trivial. Hence for simplicity, the following discussion focuses on

the container and content components.

3.2 Computing difference (∆) between layouts:
Consider a pair of GUI layouts l1 and l2. Initially let us make the

simplifying assumptions that both these layouts have the same

resolution, and that they comprise of the same number and types
of GUI elements. However, these elements may be placed with

different sizes and in different locations in the two layouts. Then

the logical distance between these layouts can be represented in

several different ways:

(1) Summation of relative changes in size

(2) Summation of relative change in location (Euclidean distance

moved)

(3) Difference in the number of elements

(4) Difference in the types of elements

If a user or some logical system were to already map every element

from l1 to the corresponding element from l2, then it is trivial to

calculate the metrics 1 and 2 mentioned above. However, to gen-

eralise, we assume that the layouts are given to us without such

ready-made mapping. Here, we need to first deduce the best possi-

ble mapping for pairs of elements in layouts. This is a non-trivial

exercise that we denote as the ∆ algorithm. The algorithm accepts

a pair of layouts, deduces the best possible mapping between all

pairs and then reports the difference between these layouts for that

deduced mapping. We model this in terms of an MILP formulation
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Layout B

δ width

Difference (Layout A, Layout B)

Δ = (∑ δ width+height, ∑ δ position, 
         ∑ δ unmatched,    ∑ δ type)
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δ position & height

δ position, width & height δ unmatched

δ position, 
width, height 
& type

δ width

Figure 4: Delta visualisation. The differences between Layout A and B are highlighted in the middle. The full delta is a vector
of four terms as shown at the bottom.

with the objective of minimising the perceived difference. This per-

ceived difference is reported in terms of a multi-dimensional vector

of differences as calculated from different perspectives (Figure 4).

The difference can also be collapsed to a single dimensional scalar.

The ∆ algorithm by nature is required to be symmetric and should

satisfy the triangle inequality. Further, we also require that it can

be extended to the more generic case where the number and type

of the constituent elements is not the same. Each of the terms in

the ∆ function takes the following form:

1

|Es | ·maxδ

Es∑
es

Et∑
et

(Γetes · δ (es , et )) (1)

where Γetes indicates whether two elements are mapped together

(Γetes = 1) or not (Γetes = 0), and δ (es , et ) corresponds to the difference
between those elements. The following element-wise difference

functions are used:

• δsize(es , et ): The absolute difference between the element

circumference

• δposition(es , et ): The absolute approximate Euclidean distance

between element positions

• δ
similarity

(es , et ): The relative number of shared component

categories between the components

Element circumference is chosen over area due to its linearity. Eu-

clidean distance likewise not being a linear function, it is approxi-

mated using the following formula (from [4])

f (x ,y) =
1007

1024

max(|x |, |y |) +
441

1024

min(|x |, |y |) (2)

As each element belongs to a known component, and the compo-

nents are organised according to component categories, the similar-

ity of two components is defined as the relative number of shared

categories between them (e.g., components ‘Content/Text/Label‘

and ‘Content/Text/Paragraph‘ share
2

3
, while ‘Content/Text/Label‘

and ‘Content/Action/Button‘ share
1

3
). The values for maxδ are as

follows:

• maxδsize: The layout circumference

• maxδposition: The length of the layout diagonal

• maxδ
similarity

: 1 (normalisation is achieved at the level of

each component pair)

We formulate three additional terms for use in different functions

of the system:

(1) ∆
unmapped

(La ,Lb ) (in the library search): The number of

unmapped elements in the source layout.

(2) ∆
mismatched

(La ,Lb ) (in the layout transfer): The number of

totally dissimilar elements mapped together function.

(3) ∆area(La ,Lb ) (in the layout transfer): The difference in the

area of each target element and the sum of the source element

areas mapped to it.

As the layout transfer function allows multiple source elements to

be mapped to a single target element, their total area should match

the area of the target element (Figure 6a).

Computation of difference between layouts must also distinguish

between different element types. This was a critical feature: for

example, we require to know that one specific rectangle in the draft

actually refers to an image and should not bemapped to a button. So,

we map containers only to other containers; individual UI elements

and widgets are preferably mapped to the same element type.

3.3 Library Search
Consider a library ofn layouts has been provided as {L1,L2, . . . ,Ln }.
In our implementation, we assume that these layouts are available

as standard Sketch format files. These Sketch files inherently de-

volve to a tree structure. We translate Sketch files into a common

JSON format. Alternatively, it is straightforward to create similar

JSON-formatted layout files using other tools such as Figma, Adobe

Illustrator, or manually.

Now, when a new source layout S is given, we wish to find

a target layout in the library that best matches S. To address this
problem, we first individually compare every layout from the library

with S using the ∆ algorithm. For example, we denote the difference

between L1 and S as ∆(L1,S). Thereafter, we pick non-dominated

layouts based on the multi-dimensional difference. Finally, we pick

the best-matching layouts based on the single-dimensional (scalar)

difference.

3.4 Layout Transfer
The actual layout transfer occurs when the designer selects a suit-

able target layout LT from the identified matches. Now, we wish to
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Figure 5: (a) A layout is segmented by finding all separation lines that divide elements either horizontally or vertically. This
produces an hierarchy of bounding boxes (b) A tree structure represents this hierarchy, and consists of virtual segment nodes,
container element nodes, and content element nodes. Each internal node is tagged as either a row or a column.

compute a new retargeted layout L∗ that has the same components

as S but arranges them in the structure of LT . To build this L∗, we
argue as follows: The ideal L∗ is the one for which the semantic

changes to the source layout and the visual difference ∆(L∗,LT ) to
the target layout are minimised. It should be noted that semantic

similarity between layouts differs from geometric similarity in that

it also considers the component types and their organisation; se-

mantic changes should be minimised so as to retain the intended

logical structure of the layout. Again, we model this as an optimi-

sation problem and formulate it in terms of a MILP. The objective

of the MILP is to minimise ∆(L∗,LT ); the constraint is that the L
∗

must comprise of S alone.
The layout transfer algorithm first categorises elements in the

source layout, and segments the layout (Figure 5a) into a tree struc-

ture, where each internal node is classified either as a row or a

column. Container elements are considered as internal nodes and

content elements as leaf nodes (Figure 5b).

The algorithm then combines the source and target layouts to-

gether by placing the content of one layout (source) to the structure

of the other (target). This is achieved by finding a mapping between

the elements of the two layouts. Each element in the source layout

is mapped to a single element in the target layout. Multiple ele-

ments are allowed to be mapped to one element in the target. In the

case of container elements, these are then merged to form a new

container. For content elements, they are placed next to each other

in the retargeted output layout (Figure 6a). The mapping of con-

tainers and content is linked such that the content of each source

container must be mapped to the content of the corresponding

target container.

While each element in the source layout must be mapped to

one element in the target layout, elements in the target layout are

allowed to mapped to none or any number of elements in the source

layout. If an element in the target layout is not mapped to any of

the source layout elements, the size of the corresponding node

is set to zero. If more than one source element is mapped to the

same target element, the corresponding node is set to encompass

all of the mapped elements, and the elements are laid out along the

direction of the parent group node (Fig. 6a).

To maintain semantic features of the source layout, the objective

function is augmented with two additional terms:

• The amount of downscaling of each element, includingwidth,

height, and circumference

• The change in relative length of circumference of any two

elements in the source layout S

These objectives ensure that the design is not changed against the

designer’s intent, as the size of an element indicates its relative

saliency and thus importance in the layout.

3.5 Applying Design Guidelines
The layout transfer model is further augmented with constraints

derived from the design guidelines and objectives to ensure aestheti-

cally pleasing results. These constraints include component-specific

design system rules applied to elements individually, as well as inter-

element constraints, such as margins and padding. For each node

in the layout tree, its children are constrained to be placed within

its bounds, with padding applied if the node is a container. If the

node is designated as a row or a column, the children are stacked

next to each other in the respective direction.

Component guidelines are applied as constraints to each element

according to its type. These include minimum, maximum, or fixed

dimensions, or aspect ratio. For example, input elements often have

a fixed height, but are allowed to stretch horizontally; graphical

elements such as pie charts or icons instead have a fixed aspect

ratio.

Layout guidelines are represented through the following objec-

tives:

• Layout symmetry: consecutive child nodes should have the

same width.

• Container packing: containers should be stretched to use

available width and height in the layout.
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Figure 6: (a) When target elements are not mapped to any source elements, their size is set to zero. When multiple source
elements are mapped to a single target element, it is preferable that their combined area matches that of the target element.
(b) In some cases, aesthetic constraints may be contradictory. Here, good container alignment necessitates extra padding in
some containers.

• Container filling: content should extend to the right and

bottom edges of the container.

In some cases, the last two objectives may be contradictory (Fig-

ure 6b). Here, container packing is preferred over filling to improve

alignment.

For guideline validation use-cases, where design guidelines are

applied to the source layout without layout transfer, an additional

term is added to the objective function to minimise changes to

element positions. This ensures that the output retains the overall

layout of the source while fixing identified violations.

3.6 Implementation
Our models are implemented in Python 3.8. We use the Gurobi

solver, running on a server using a stack of Docker containers

and orchestrated using Docker Compose. Our design assistant is

integrated within the Sketch
1
application, a widely-used design

platform, as a plugin. The plugin is implemented in JavaScript,

and uses React to load and modify layouts via the Sketch API.

While our system supports distributed workflows, we performed all

experiments running the server locally on a MacBook Pro (16-inch,

2019) with a 2.3 GHz 8-core Intel i9 CPU.

We conducted a performance analysis covering layouts contain-

ing between 20 and 30 elements (see Figure 7). Solving the layout

validation model took less than 100 milliseconds in all cases. Solving

the ∆model between two layouts took 10–100 milliseconds per pair,

which is well-suited for searching small design libraries (e.g., with

50 layouts in the design library, the result should be returned within

3 seconds). For large design libraries, distances between existing

layouts can be precomputed, and the triangle inequality of the ∆
function can be exploited to find the closest layouts more efficiently.

Transferring the layout from a perfectly-matched target took a

median time of 4.0s [3.1, 4.7], and for well-matched targets 6.3s

[4.1, 15.2], where the values in brackets represent the 0.25 and 0.75

1
https://www.sketch.com

quantiles. When the source and target layouts were significantly

different, the layout transfer model took a median time of 14.3s [4.4,

38.5]. These results suggest sufficient capabilities for interactive

real-time use of our tool.

4 CASE STUDY: DESIGN SYSTEM OF AN ICT
COMPANY

We evaluated the compatibility of the approach with professional

practice in a case study of a design team in a large-scale consumer

electronics manufacturer that develops hardware and software

products. The case was motivated by the company’s search for

approaches and solutions to improve the design workflow within

their design teams. The 6 participants in our study were expert

professional designers with 4+ years of experience in UI design

with Sketch application. 4 designers worked with the installed sys-

tem directly (with support from authors) while 2 other operated

it remotely. The UI design team defined a design system, with a

complete set of style and design guidelines (listed below). For refer-

ence, a well-curated design library containing existing designs was

provided. All future designs for new applications are required to

comply with this design system; further, future designs must also

follow examples and ongoing practices from the design library.

4.1 Design Guidelines
The provided guidelines are composed of two parts: 1) individual

components and 2) overall layout system.

1) Component guidelines: These specify permissible sizes in terms

of minimum/maximum width and height (or a fixed aspect ratio),

and the classification type of each component (header, container,

content). Table 1 list examples of these guidelines.

2) Layout guidelines: These specify the interactions between

multiple components. For example, components should be aligned

according to a grid, except the header containers, which should be

placed at the top of the screen and span the whole layout width.
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Component Type Min. Width Max. Width Min. Height Max. Height Aspect Ratio
Header Header 100% - 64px 64px -

Card Container - - - - -

Title Content - - 28px 28px -

Paragraph Content - - 20px - -

Input Label Content - 60px 20px 20px -

Text Field Content - - 50px 50px -

Button Content 100px - 40px 40px -

Bar Chart Content - - 120px - ≥4:3

Pie Chart Content - - 120px - 1:1

Table 1: Example component guidelines defining the dimensions of known components. Content components must always be
placed within the bounds of a container element.

Other containers and content should be placed into two nested

grids as defined below. These grid dimensions are defined using a

base unit that, along with the number of columns, depends on the

screen resolution. At a large screen width of > 1680px, 24 columns

are used and the base unit is defined to be 16px. This then scales

down as the screen width decreases. For example, for screen width

between 385 and 768px, only 12 columns are employed and the

base unit is 12px. To perform the actual placements, two grids are

defined: for container and content elements. The grids are defined

by their gutter (margin between columns) and the margin on both

sides towards the canvas. The configuration employed is shown

below.

Gutter Left Margin Right Margin
1 base unit ≤ gutter left margin (+ 1px, if necessary)

4.2 Implementation
Our interactive layout transfer approach is especially suited for

deploying such a case. The specified design guidelines were im-

plemented within our system without requiring any modification

to our basic implementation (discussed in Section 3). More specif-

ically, they were defined as constraints in the MILP optimisation

program. These can be further configured using a human-readable

configuration file, without any code. The provided design library

was included within the system, and is directly usable by our tool

to identify matching targets for layout transfer. Using our custom

implementation, designers are now provided with tools to validate

and improve their designs, or to transfer their draft designs to the

target layouts found in the design library.

4.3 Sample Results
Figure 7 illustrates the results as obtained using standard com-

ponents and design practices of the concerned organisation. In

the figure, the X-axis represents the target layout and the Y-axis

represents the source layout. The results, presented in a matrix,

demonstrate the capability of our layout transfer method for gen-

erating different retargeted results using the same source layout

against several different targets. Conversely, it also demonstrates

retargeting of multiple sources using a single target layout.

In our preliminary observations, designers noted that the final

resultant layout matched their expectations quite closely. Further,

the interactive performance (results generated within seconds) and

the avoidance of tedious manual efforts were acknowledged as

major strengths of the system.When target layouts were reasonably

compatible with the source, the systemmet its objectives of creating

compliant layouts with minimal effort.

5 EVALUATION: PERCEIVED QUALITY OF
WIREFRAMES

To evaluate whether our optimisation-based approach can yield

good design results, as measured by the perceived quality, we con-

ducted a ratings-based study. Here, we compared three groups (con-

ditions) of layout designs – initial draft designs (Draft), designer-

made designs (Designer), and optimiser-generated designs (Opti-

miser) – by asking participants to rate a series of layout designs.

5.1 Materials
A set of 7 varying design tasks was use for each condition. For the

Draft condition, initial draft layouts were designed for each of the 7

design tasks (e.g. Figure 8. For the Designer condition, experienced

designers were asked to manually improve the draft designs to

create 7 designer-made layouts. For the Optimiser condition, our

optimiser took draft layouts as input (source), and generated a

optimised solutions for each of them. This resulted in a total of 21

layout designs for the study. To enable participants to these designs,

we implemented an online survey. Each design was included as

an individual question, and a 10-point rating scale was used for

user response. The presentation order of these 21 questions was

randomised between participants.

5.2 Participants
Our participants were recruited via Prolific

2
, an online platform

with a large number of high-quality participants. Participation was

restricted to those with a worker approval rate above 95%, to ensure

high-quality responses. Previous research has observed that expert

and non-expert participants alike can differentiate good designs

from bad ones [37]. Taking this into account, participation was not

restricted to designers.

A total of 50 participants (24 feminine, 25 masculine, 1 prefer

not to say) aged between 18 and 53 years (Mean = 26.4, SD = 8.3)

completed the study. The study took under 10 minutes to complete,

and participants were paid £1.25 upon completion, corresponding

to an hourly wage of £7.50/hr. Participation was under informed

consent, and the study adhered to European privacy laws (GDPR).

2
https://prolific.co

77

https://prolific.co


Interactive Layout Transfer IUI ’21, April 13–17, 2021, College Station, TX, USA

Figure 7: Examples of combining the content of source layouts (y-axis) with the design of target layouts (x-axis). Note, that in
the diagonal source and target are the same layout, and changes are due to the application of design guidelines.

DRAFT DESIGNER OPTIMISER

Figure 8: For each design task, layouts for three conditions – Draft, Designer, and Optimiser – were independently rated by
participants on a scale of 1 to 10.
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(a) A screenshot from one question.
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(b) Results from the survey

Figure 9: Our ratings-based study evaluated perceived qual-
ity of designs. Ratings for Optimiser condition were higher
than Draft and comparable to Designer.

5.3 Procedure and Design
Participants on the Prolific platform received a link to the survey.

The survey began with an introductory briefing and participant

consent, followed by layout-rating tasks. Participants were not

informed about the condition for each question. As stimulus, they

were shown the image of a layout (see Figure 8 for examples).

Participants were asked to pay attention to the overall quality of

the designs, and to important aspects such as the alignment of

elements, while providing ratings on a scale of 1 (worst) to 10

(best) as illustrated in Figure 9a. In a within-subject design, each
participant rated all 21 designs in randomised order. At the end of

the survey, participants provided demographic information (age and

gender identification) and were redirected back to Prolific to claim

their compensation. To summarise, the design is: 50 participant × 3

conditions × 7 layout designs = 1050 trials.

5.4 Results
The mean user ratings for the Draft, Designer, and Optimiser

conditions were 4.6 (SD = 2.5), 6.2 (SD = 2.1), and 6.0 (SD = 2.3)

respectively. The results are illustrated in Figure 9b. The effect of

the primary dependent variable condition on user rating, tested with

repeated-measures ANOVA, was found to be statistically significant,

F (2,98) = 41.01, p < 0.0001. Post-hoc test using Tukey HSD revealed

that both Optimiser and Designer had significantly higher ratings

as compared to Draft (Optimiser - Draft = 1.35; Designer -

Draft = 1.64). However, the difference between Designer and

Optimiser (= 0.28) was not statistically significant. These results

provide evidence for our optimisation-based approach. Optimised

layouts have higher ratings compared to draft designs, and similar

to those designed by professionals.

6 SUMMARY AND DISCUSSION
We presented a novel integer programming (IP) approach for in-

teractive layout transfer that retargets and optimises a rough draft

using a target layout. The system helps the designer to select a

target layout to which a given source is transferred. A mapping

between layouts can be algorithmically deduced even if there is

no obvious one-to-one mapping between the elements. Another

key feature of our system is to automatically ensure adherence to

design guidelines. This feature reduces designer effort while im-

proving consistency. We also presented results from a case study

and a ratings study suggesting that (1) the method can be inte-

grated in a real interactive design tool and thereby incorporated

in professional practice and (2) that the outputs are of high quality.

Besides transfer, the tool can detect violations to design guidelines

and suggest optimisation-based repairs.

The presented techniques – the delta algorithm, library search,

and transfer methods for IP – constitute a computationally assisted

mechanism to leverage and utilise UI design assets. Our IP for-

mulation successfully finds optimal (or close-to-optimal) solutions

within a short time (often few seconds) thus enabling interactive

and unobtrusive use. Thus, the paper contributes to the evolving

understanding of algorithmic approaches for graphical layouts.

We identify several possible improvements that support the ap-

plicability of this system. For example, our underlying model does

not currently support extending the tree structure of the segmented

target layout. Future work should look into ways of allowing the

model to extend beyond the components available in the target

hierarchy. Second, while the optimiser can handle canvases of dif-

ferent widths, we have not tested how targets that are of different

aspect ratio work out. Lastly, the current paradigm depends on the

availability of relevant target layouts in the design library. We can

also support the generation of good layouts (see [6]) even when the

library does not already include suitable templates. Finally, we fore-

see that the approach presented here may encourage design teams

to collect and curate design examples. The shared knowledge base

of design teams includes the design artefacts they have produced,

such as layouts and outcomes. This knowledge base can be consid-

ered an asset. Computational tools that allow directly exploiting

them in design tools and improve the designer’s productivity may

encourage mature practices of curation and consolidation of UI

design assets.

7 OPEN SCIENCE
We support replication and further research by releasing mathe-

matical formulations and an open code base on our project page:

https://userinterfaces.aalto.fi/layout-transfer.
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