
GRIDS: Interactive Layout Design with Integer Programming

Niraj Ramesh Dayama∗*1 Kashyap Todi*1,2 Taru Saarelainen1 Antti Oulasvirta1,2

1Department of Communication and Networking, Aalto University, Finland
2Finnish Center for Artificial Intelligence FCAI, Finland

niraj.dayama@aalto.fi, kashyap.todi@gmail.com, saarelainen.taru@gmail.com, antti.oulasvirta@aalto.fi

Figure 1. This paper presents an integer programming approach for interactively generating grid layouts, enabling designers to (1) systematically
explore a diverse set of starting solutions, (2) find solutions to partially-completed designs, and (3) search for local alternatives and within sub-spaces.

ABSTRACT
Grid layouts are used by designers to spatially organise user
interfaces when sketching and wireframing. However, their
design is largely time consuming manual work. This is chal-
lenging due to combinatorial explosion and complex objec-
tives, such as alignment, balance, and expectations regarding
positions. This paper proposes a novel optimisation approach
for the generation of diverse grid-based layouts. Our mixed
integer linear programming (MILP) model offers a rigorous
yet efficient method for grid generation that ensures packing,
alignment, grouping, and preferential positioning of elements.
Further, we present techniques for interactive diversification,
enhancement, and completion of grid layouts (Figure 1). These
capabilities are demonstrated using GRIDS1, a wireframing
tool that provides designers with real-time layout suggestions.
We report findings from a ratings study (N = 13) and a design
study (N = 16), lending evidence for the benefit of computa-
tional grid generation during early stages of design.

Author Keywords
Grid Layouts; Creativity Support; Computational Design;
Mixed-Initiative; Optimisation; Design Tools

*Authors contributed equally
1GRIDS: Generating Real-time Interface Design Suggestions

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CHI ’20, April 25–30, 2020, Honolulu, HI, USA.
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6708-0/20/04 ...$15.00.
https://dx.doi.org/10.1145/3313831.3376553

CCS Concepts
•Human-centered computing → User interface design;

INTRODUCTION
The design of graphical user interfaces (GUIs) commonly em-
ploys grid layouts [40] – spatial structures defined by grid
lines. Grid lines simplify layout design by guiding the sizes
and positions of GUI elements. Grids serve as a mechanism for
evaluating and deciding their spatial organisation, including
considerations of visual importance, grouping, relative posi-
tioning, and flow. Grid layouts are used across various stages
of design, from sketching and wireframing to prototyping and
deployment (Figure 2).

The design of grid-based layouts is mostly manual and left
to the designer. Although present-day tools provide function-
alities such as grid templates, grid-snapping, and usability
hints [41], they mostly do not offer computational layout gen-
eration. Editing involves repetitive manual work including
resizing and reorganising. Design is also combinatorially
challenging. There exists a large number of possibilities for
organising a given set of elements into a grid, and a good grid
layout must meet several objectives [34, 39]. Changing one
element may necessitate reorganisation of many others.

Computational generation of grid layouts has the potential
to support designers in the creative process of layout design,
helping them synthesise, envision, and evaluate [49]. Access
to diverse but relevant computationally generated suggestions
could help them in exploring and enhancing designs [55],
thus avoiding too early fixation [9]. Moreover, need for man-
ual editing could be reduced if computer-generated designs
were able to suggest completions to partially finalised designs.
However, the algorithmic problems involved are non-trivial.
Any such method must efficiently search within a very vast
design space while reacting to real-time changes made by the

https://dx.doi.org/10.1145/3313831.3376553
mailto:permissions@acm.org
mailto:antti.oulasvirta@aalto.fi
mailto:saarelainen.taru@gmail.com
mailto:kashyap.todi@gmail.com
mailto:niraj.dayama@aalto.fi

designer. Prior to this work, it has not been known how to best
define core features of a good grid layout. The more design
objectives and concerns one can incorporate into the math-
ematical system, the less final editing is left to the designer.
However, it is not known how to combine objectives that to-
gether ensure performant and aesthetically pleasing layouts.
Elements must be well-aligned, key elements easily reachable,
related elements logically grouped together, and so on.

We propose a mathematical formulation of the grid layout
problem that enables real-time generation and exploration of
layout designs with a designer in the loop. Our approach
is based on integer programming (IP) [58]. One benefit of
IP—a so-called exact method—over random-search (black-
box) based approaches is that the key features of the expected
outputs can be guaranteed. If a solution exists, it will be found.
Further, we use a combination of continuous and discrete
decision variables, thus resulting in a mixed integer linear
programming (MILP) formulation. In our model, continuous
decision variables are used for element placement and sizing,
and discrete decision variables are used to define the relative
positions of elements with reference to each other. Doing so
makes the model independent of canvas-size and element-size,
drastically reducing the number of discrete variables required.
Our formulation strictly uses linear expressions (all constraints
and in objectives), making the model computationally fast and
enabling interactive use even for larger-sized problems.

Our MILP model guarantees proper packing: all elements
fit on the canvas without overflowing or overlapping. In a
single model, it further addresses other design goals such
as: (1) the outer hull is rectangular, (2) there are no holes,
(3) elements are well-aligned [43], (4) related elements are
grouped together, and (5) preferred positions are obeyed to
provide visual connectivity [4]. Prior works on computational
grid generation [3, 52] have mostly addressed one or few of
these key properties at a time. As IP provides bounds for its
solutions, designs can be guaranteed to be within specified
range (say within 5%) from the best achievable design. We
exploit this for generation of controllably diverse designs.

Our approach offers several benefits as a computational
method. First, many necessary layout properties are included
in the formulation, reducing effort for the designer. Second,
making the model canvas-size independent results in a direct
advantage. Previously-employed approaches (e.g. [55]) mostly
relied on discretisation of the canvas. For example, a prob-
lem of 5 elements placed on an 800×600 pixel canvas would
require around 2.4 million discrete decision variables and con-
straints to ensure a non-overlapping and well-aligned layout.
For the same 5-element problem, our MILP model requires
only 110 discrete and 20 continuous decision variables. Such
problems can now be solved to generate high quality grid lay-
out solutions within few seconds using commodity hardware.
Finally, black box methods for multi-objective optimisation
often yield an unbalanced sample from the so-called Pareto
front. In other words, many solutions may be too similar with
each other to be informative. In contrast, we build on the
exact MILP formulation to guarantee diverse solutions that are
individually well-performing – that is, close to optimal for all

Figure 2. Grid layouts are used to organise visual elements in different
stages of design. Left: Examples of grid layout templates; Right: A Web
interface following a CSS-based grid template (www.nytimes.com).

objectives – and space-spanning, i.e. diverse in a systematic
way. This enables designers to explore good alternatives more
efficiently.

These properties support integration within interactive design
tools. To demonstrate this, we present GRIDS, an interac-
tive wireframing tool that encapsulates our MILP approach
to present real-time design suggestions. Designers can use
GRIDS for exploring and improving grid layouts with little
effort. As illustrated in Figure 1, auto-generated suggestions
help designers to interactively (1) explore a diverse set of
starting points towards solving a layout problem, (2) find
completed solutions for partially-designed layouts, (3) exploit
nearby alternatives and solutions within a specified subspace
of the design space. All suggestions are presented in an in-
teractive example gallery [35], with the idea that designers
quickly recognise good designs (see [54]). We assess these
capabilities empirically with professional designers, reporting
quantitative and qualitative feedback. The results indicate that
this approach can assist designers in the exploration of GUI
layouts in realistic design tasks.

To sum up, the key contributions of this paper are:

1. A fast and comprehensive mixed-integer linear program-
ming (MILP) model for grid layout generation.

2. Further computations for diversification, intensification, and
completion of partial solutions.

3. Demonstration of interactive grid generation in the GRIDS
tool, and evaluation with 16 professional designers.

RELATED WORK
The grid layout is a spatial organisational principle [30] de-
veloped post-WWII [44]. We here focus on rectangular grids
typical in the design of graphical user interfaces (GUIs).

Facilitating the creation of grid layouts
Grid layouts are utilised as a design principle in many toolkits
and layout managers [38], which offer interactive aids like grid-
snapping and auto-alignment. A ruler-and-compass metaphor
has been used [6] to aid in precise placement. Here, heuristics
to automatically place guiding lines and circles were used,
helping users construct grid-adhering shapes. Interactive grids
and multi-touch alignment guides have also been presented to

www.nytimes.com

guide grid positioning [18]. A method for global beautification
has been presented that infers relationships between layout
elements, and fixing issues such as misalignment [59]. Users
can interactively refine the layout by resolving ambiguity and
adding constraints. While these techniques assist with grid de-
sign and alignment, layout construction is left to the designer.
Design tools also often offer grid templates: predefined lay-
outs where content can be added [15]. However, templates
insist that contents are made to fit them, and they are limited
to a small set of pre-defined layouts.

Grid generation by constraint solving
Since its first introduction in Sketchpad [53], constraints
that can aid in the design of layouts has been a topic of re-
search [7, 26, 31, 46]. Layout constraints can define bounds
on elements, or relationship between elements. A constraint
solver manipulates element properties to best satisfy the spec-
ified constraints. One method is to solve layout constraints
incrementally [17]. It can satisfy changing constraint hierar-
chies consisting of hard and soft constraints in an efficient
manner. Relational grammars can be further added to encode
design knowledge [57]. This can address the logical com-
position of elements during layout generation. Chorus [28]
addressed non-linear geometric constraints such as Euclidean
geometric, non-overlapping, and graph layout constraints. It
also discussed soft constraints with hierarchical strengths or
preferences. Cassowary [1] implemented a linear arithmetic
constraint solver to adapt layout to changing sizes. This has
also been implemented in some commercial systems such as
Apple’s Auto Layout2, enabling GUIs to dynamically adjust
their layouts when window or screen dimensions changed. A
benefit of constraint solving is that a layout can be defined by
means of simple constraints. On the other hand, specifying
a layout fully using just constraints quickly becomes com-
plex [61]. To our knowledge, no constraints-based method
has been proposed that ensures proper packing of elements
and takes care of objectives like alignment, rectangularity, and
grouping. Lacking this, designers may need to modify layouts
manually or fix remaining aspects programmatically.

Grid generation by combinatorial optimisation
Combinatorial optimisation methods can find solutions, from
a large design space, that satisfy a stated design objectives.
Within the area of combinatorial geometry, grid layout has
been studied in the context of 2D bin packing [37,42,50], rect-
angular packing [27], and the guillotine cuts problem [11]. An
elementary version of the grid design problem has been previ-
ously proposed [27], but it merely attempts to find the most
densely packed solution whereby the elements are squeezed
together as closely as possible; there is no attempt to address
aesthetics (like alignment) and no intent to explore multiple
layouts. Optimisation has been used for resizing GUI ele-
ments [60], with the focus being on improving aesthetics of a
layout by making subtle changes when the available space is
varied. Previous research has also looked into generating opti-
mised grid-based layouts. AIDE is a metrics-based tool to aid
design and evaluation of UIs [52]. It included objectives such

2https://overconstrained.io

as balance, efficiency, and constraints. The optimiser com-
puted a layout grid and used this to organise widgets. ADL is
a layout engine that dynamically constructed grid layouts [3].
Given static elements, it filled up the remaining area with dy-
namic content . Typically, these approaches compute a single
point-optimal solution. Following earlier findings, we believe
it is necessary to present designers with a diverse range of
solutions [2, 55]. However, random-search based optimisa-
tion methods do not support generation of controllably diverse
results. IP-based approaches have been previously used to
generate, for example, keyboard layouts [32]. This allows for
a structured search process and guaranteed bounds, thus im-
proving outcomes and increasing designer confidence. More
recently, AdaM employed IP to distribute UIs in multi-user
environments [48]. While the formulation does address lim-
ited display size, the objectives, constraints, and applications
differ substantially from ours.

SUPPLE and ARNAULD constitute the seminal literature
concerning personalised UI generation [19–21, 23–25]. The
systems automatically generate interfaces through a branch-
and-bound optimisation technique that is flexible enough to
adapt to various objectives by modifying the underlying cost
function. Our work differs from this line of work in three
key aspects: (1) Input: SUPPLE and its descendants require
functional specifications as input. This is beneficial for appli-
cation developers as they only need to specify what functions
are exposed to users. On the contrary, our work targets UI
designers who already have some ideas about desired layouts.
It enables designers to define the design task by demonstra-
tion, including element types, and preferences regarding size
and placement. (2) Layouting: When rendering an interface
layout, SUPPLE used three heuristics to sequentially decide
the layout – bottom-up, top-down, and minimum remaining
values [22]. The key objective was to find a layout that satisfies
user preferences, abilities, and device constraints. In contrast,
our MILP formulation aims at constructing well-formed grid
layouts, with desirable aesthetics, by considering the entire
composition of the canvas. (3) Output: SUPPLE and others
aim at producing a single point-optimal design for end-users.
In contrast, our MILP approach generates multiple diverse
solutions for mixed-initiative design tools.

Interactive layout generation
Computational techniques have been proposed for designing
layouts with designer in the loop. DesignScape [45] supports
enhancement and exploration of single-page layouts using
energy-based optimisation. The design principles here are
limited to those learnt from a small set of examples, and op-
timisation is computationally-expensive. Sketchplorer [55]
supports exploring, enhancing, and recolouring layouts. How-
ever, it employs black-box optimisation on a discrete canvas,
which does not scale, resulting in poor performance for com-
plex design tasks. Moreover, it does not address objectives
of good grid layouts, such as rectangularity, alignment, or
preferential placement. Genetic algorithms have been used
to iteratively select promising interfaces from a collection of
candidates [16]. Various constraints had to be placed to pre-
vent inappropriate groupings in the layout, and to reduce the
number of selections. Data-driven approaches enable layout

https://2https://overconstrained.io

generation without requiring problem specification [36, 62].
However, results are limited to the domain of the training
dataset, and offer no quality guarantees. In what comes close
to our aims, a semi-automatic grid-based technique has been
previously proposed [29]. Here, users constructed an example
layout, which, as in this paper, was represented as an algorith-
mic task to generate layouts of any size. New examples were
presented to the user, enabling them to steer the generation.
Interactive genetic algorithms have also been used [51] to
generate grid layouts that address contrast between elements,
and some alignment issues. However, aspects such as rectan-
gularity, and preferential placement were not addressed, thus
leaving these aspects to the designer. Our work proposes a
more complete formulation that takes into account these key
aspects of a well-formed grid layout.

Summary
Previous works have studied aspects of grid-based layouts
individually, and provided point solutions to some features
(packing, alignment, etc). This paper is the first attempt to
combine key objectives within one compact formulation while
guaranteeing the quality of layouts, providing diverse space-
spanning solutions, and real-time performance.

THE GRID LAYOUT PROBLEM
The computational problem in generating grid layouts can be
defined as follows:

Given a set of rectangular elements that must be placed onto
a fixed size canvas with specified widths and heights, find
feasible solutions where all elements are properly packed
in a non-overlapping and non-overflowing layout.

In our work, we formulate the following objectives (Figure 3):

1. Overall alignment: A well-formatted layout places as
many/most of its elements aligned to each other edge-wise.

2. Rectangular outline: An outline with jagged edges, a lop-
sided hull, or any non-convex arrangement, is aesthetically
undesirable. The overall outline induced by the layout of
elements must approach a rectangular external hull.

3. Placement: We prefer to place interrelated elements in
close proximity to each other. This transition objective
manifests itself in three ways:
(a) Traversal Distance: If users often need to navigate

between a pair of UI elements (for example, a text
box and an associated button), it is preferable that the
distance between these elements be minimised.

(b) Grouping: A contiguous placement should be ensured
for semantically or otherwise related items.

(c) Preferential Placement: A designer may want a spe-
cific element be placed definitely on a specific side of
some other element, or at a specific point (locked) on
the canvas. For example, the ‘Search’ button may be
expected to be on the right side of a text entry field.

For interactive design, in addition to the above objectives, we
cover techniques to: (1) systematically diversify designs, (2)
respect pre-defined canvas elements when completing partial
designs, and (3) search locally for enhancements.

Figure 3. Key objectives in the grid layout formulation. (1) Alignment:
red lines indicate misalignment issues; (2) Rectangularity: red lines in-
dicate a non-rectangular outline of the grid; (3) Preferential placement:
red borders highlight elements not placed at preferred positions. (4) A
valid solution that conforms to all objectives.

The following section provides the core MILP formulation,
along with specific formulations to address each of the objec-
tives.

MIXED INTEGER LINEAR PROGRAMMING (MILP) MODEL
In this section, we highlight key mathematical concepts that
enable us to generate solutions for the defined grid layout
problem. The complete mathematical formulation is included
in the Supplementary Material.

Overview: We propose an optimisation model whose size
depends on the number of elements alone; the number of de-
cision variables and constraints in our model is independent
of the canvas and other factors. Further, we make an explicit
distinction between the (1) the core MILP formulation, which
only generates properly packed grid skeletons, and (2) the
other objectives. The core MILP assures a non-overlapping
non-overflowing grid with elements placed within permissible
size limits in permissible locations. These candidate solu-
tions from the core MILP may not be good, well-aligned or
aesthetically acceptable. Rather, the other requirements of
alignment, external outline, etc. are enforced over the core
MILP skeleton by plugging in as objective functions or as
additional constraints.

Core MILP formulation for grid skeletons
We define our coordinate system such that the origin/reference
point is the top left corner of the canvas. The X axis is positive
rightwards and the Y axis is positive downwards. Continuous
decision variables Le ,Re ,Te ,Be represent the location of the
left, right, top and bottom edges of individual element e. Deci-
sion variables We ,He represent the actual width and height.
These variables ensure proper sizing and prevent overflow. We
note that the variables L , R , T , B are not binary and do
not involve discretisation of pixels or locations. This factor is
critical for the performance of the solver.

Next, we prevent overlap using the following two binary deci-
sion variables adapted from an MILP approach [27] that was
originally introduced for the rectangular packing problem:
Γe −→ Indicates e is placed anywhere above ē ē
Πeē −→ Indicates e is placed to the left side of ē

The interpretation of Γe is that the bottom edge Be of element ē
e is less than or equal to the top edge Tē of element ē. Sim-
ilarly, the interpretation of Πeē is that the right edge Re of
element e is less than or equal to the left edge Lē of element ē.

Either of these decision variables Γ and Π effectively slice the
space around any element into two half-spaces. Overlap avoid-
ance practically means that any other element must completely
lie within one of those half-spaces. Then the variables Γ and
Π are sufficient to prevent overlap of any pair of elements via
the following constraints:

e1 ≤ Γe + Γ ¯
ee ≤ 2 . . .∀e, ē ∈ Eē e + Πeē + Π ¯ (1)

Tē ≥ Be + H (Γe − 1) . . . ∀e, ē ∈ Eē (2)
Lē ≥ Re + W (Πeē − 1) . . .∀e, ē ∈ E (3)
W Πeē ≥ Lē − Re . . .∀e, ē ∈ E (4)
H Γe

ē ≥ Tē − Be . . .∀e, ē ∈ E (5)

Equations (2)–(5) are ‘plumbing’ constraints that logically
connect the element edge locations to the Π and Γ variables.
There are four possible cases for two non-overlapping ele-
ments e and ē: (i) e above ē, (ii) e below ē, (iii) e left of ē,
or (iv) e right of ē. Equation (1) is the crux of the overlap
prevention, which ensures that for any pair of elements, at
least one of these cases is satisfied. This core formulation
yields non-overflowing non-overlapping layouts with element
sizes within their prescribed limits.

Ensuring overall alignment
To model overall alignment, we define notional Cartesian grid-
lines over all pixels of the canvas. For any feasible solution,
only those grid-lines are relevant where at least one element
edge occurs. If two or more elements have any of their edges
aligned with each other, those elements share a single grid-line
for those edges. So, the total number of grid-lines actually
utilised in any feasible solution quantifies the overall align-
ment within that solution. Poorly aligned feasible solutions
require a larger number of grid-lines. Designers prefer well-
aligned solutions and this objective translates to minimisation
of the total number of grid-lines required.

Consider a candidate solution where one edge of element
e and the corresponding edge of element ē are aligned. Then
we designate set {e,ē} as an Aligned Group. Formally, we
define an Aligned Group as a set of elements whose one cor-
responding edge is aligned for the given candidate solution.
An aligned group may be a singleton (containing only one ele-
ment) or may contain all elements from E . The four distinct
types of aligned groups are:

If the left edge of elements e, ē, . . . are aligned, then we
designate set {e,ē,. . . } as a Left-Group abbreviated as LG.

If the right edge of elements e, ē, . . . are aligned, then we
designate set {e,ē,. . . } as a Right-Group abbreviated as RG.

If the top edge of elements e, ē, . . . are aligned, then we
designate set {e,ē,. . . } as a Top-Group abbreviated as TG.

If the bottom edge of elements e, ē, . . . are aligned, then set
{e,ē,. . . } is designated as Bottom-Group abbreviated as BG.

For every alignment-group, we define the value as the distance
of the relevant edge of all its constituent elements from the
corresponding axis. Decision variable V i indicates value of
the ith alignment group. Every element e belongs to exactly
one LG, one RG, one TG and one BG. The four values of

A
B

D

C

Elements A, B, C form a
Top-aligned Group (TG)

If the right side (RG) were
known, element B could
 be completely defined.

Elements B, D form a
Left-aligned Group (LG)

Elements B, C form a Bottom-aligned Group (BG)

Figure 4. Alignment groups specify relative placement of groups of ele-
ments. An element is completely defined if it belongs to four such groups.

these four alignment-groups match the edge locations Le ,
Re , Te and Be of element e. So, the four alignment-groups
of any element are sufficient to define the location and size
of that element. The overall layout is completely defined if
the alignment-groups information is known for all elements.
The solver decides which alignment-groups are required in
the solutions, the value of each group, and membership infor-
mation (elements belonging to that group). The concept of
alignment-groups is illustrated in Figure 4.

Ensuring rectangular outline
Consider a layout of n elements involving m number of LGs.
No two LGs can share the same left-side value (otherwise
they will become one single LG). So, we can identify the
specific LG that has the minimum left-most value. This LG
identifies the extreme-left side of the outline hull of the overall
layout. Similarly, we identify the right-most, top-most and
bottom-most alignment groups. Together, these extremities
define the smallest rectangular outline (SRO) that would have
covered the layout. In general, this SRO is not the immediate
boundary of the layout. The actual boundary of the layout is a
slightly smaller (potentially concave) shape within this SRO.
The difference between the true outline and the SRO is what
makes the outline non-rectangular. We explore several options
to minimise and penalise this undesirable difference between
the true outline and the SRO:

1. Adherence to extremity: We identify the alignment-
groups that define the SRO. The elements aligned to the
SRO do not disturb the rectangularity. So, our objective
function rewards every case where an edge fits the SRO.

2. Penalise non-extremity: Consider an element x whose
right-most edge is at distance D from the right-side of SRO.
Further, there is no element y to the right-side of element
x. We ascribe the gap D to element x alone and penalise
element x proportional to gap D.

3. Virtual elements: We define virtual elements to fill any
non-rectangular area (to be penalised). We penalise the
existence of such virtual elements. This approach involves
non-linearity and carries higher computational cost.

The first approach is sufficient for the grid layout problem. We
compute the maximum possible number of cases where an
edge of an element aligns with the extreme edges. Thereafter,

Figure 5. When diversity is not controlled, similar designs are generated.

we ensure that the actual layouts generated must continue with
(a slightly loosened approximation of) this maximum number.

Ensuring preferential placement of elements
A pair of elements e and ē can be placed relative to each
other using Π and Γ decision variables. Elements can also
be placed relative to the canvas. For example, consider that
element e is marked to be the header of the canvas. This
means that e must necessarily lie above all other elements. In
some cases, it is permissible that ē may be placed parallel to
(but not above) the header. All such conditions can be enabled
by enforcing that no element ē may ever be placed above the
header e. Finally, elements can also have fixed positions on
the canvas using similar mechanisms.

Generating controllably diverse solutions
While there has been some work in generating diverse layouts
[45, 55], it has been hard to accurately estimate how different
designs are, with respect to each other. Figure 5 illustrates
this problem. It shows some very similar solutions produced
because the design space is not systematically spanned.

We build upon concepts from literature [13, 56] for system-
atically spanning the design space. Specifically in our case,
the summation of non-negative values of Π and of Γ consti-
tutes a rigorous two-dimensional distance metric. We use this
metric to efficiently span the design space by controlling the
amount of dissimilarity required between different solutions.
Our procedure to obtain a wide variety of diverse solutions
is as follows: First, we solve the optimisation problem while
optimising for the criterion of best grid layout. We obtain the
minimal number of grid-lines and designate this as O. Then
we add a constraint that the permissible number of grid lines
may not exceed O + 1 and we optimise for a rectangular out-
line. In case we do not get a rectangular outline, we loosen
the constraint of permissible number of grid lines to O + 2
and so on. After getting a rectangular outline, we count the
number of cases for adherence to external rectangular hull and
set that as a new constraint. These two constraints in conjunc-
tion assure a well-formatted layout with clean grid-lines and
rectangular outline. Next, we focus on generating multiple
different solutions. We solve the optimisation problem again,
this time to maximise the value of ∑Γ. We designate the re-
sulting objective value as Γmax. Then, we minimise ∑Γ to find
Γmin. Similarly, we compute Πmax and Πmin. After computing
these four boundary values, we consider them as the four car-
dinal vertices of a conceptual polygon drawn in the 2-D space
induced by the interval [Γmin,Γmax] and [Πmin,Πmax]. This

Feasible Space

Γmin

Γmax

Πmin

Πmax

N
o.

 o
f e

le
m

en
ts

ve
rti

ca
lly

ab
ov

e
ot

he
r e

le
m

en
ts

No. of elements horizontally
to the left of other elements ∑ Π

∑ Γ

Figure 6. The feasible space, visualised conceptually as a quadrilateral,
can be systematically spanned to generate a diverse set of solutions.

quadrilateral-shaped feasible space3 is illustrated in Figure
6. We seek solutions well spaced across this quadrilateral
by enforcing constraints on permissible values of ∑Γ, ∑Π.
Successive points in this interval yield solutions that are suf-
ficiently distinct and yet satisfy the alignment requirements
discussed earlier. Figure 7 illustrates diverse solutions for
a sample input design. Systematic spanning of the design
space also enables us to search for local improvements in the
neighbourhood of a design.

Algorithm 1 : Procedure to generate grid layouts
Input: Data instance involving n elements

1: F := {}
2: Γmax,Γmin := Extremal values of Γ by core MILP
3: Πmax, Πmin := Extremal values of Π by core MILP
4: εmin := Optima value by minimising ∑ε
5: Rmin := Optimal number of cases for overall rectangular

outline using core MILP
6: Use εmin,Γmax,Γmin,Πmax,Πmin,Rmin to augment core

MILP formulation
7: while (kFk < Required number of solutions) do
8: for all Γval ∈ [Γmin,Γmax do
9: for all Πval ∈ [Πmin,Πmax] do

10: Enforce Γval ,Πval
11: f ←− Optimal solution of core MILP with

current constraints
12: F = (F ∪{ f })
13: Remove Γval ,Πval constraints
14: Loosen alignment constraint (εmin) by unit value
Output: Set F of feasible grid layouts

Summary
The full solution procedure, outlined in Algorithm 1, involves
repeated application of the core MILP formulation. Steps 2–5
execute the MILP with different objectives to compute the
logical bounds of all governing parameters. Step 6 restricts the
feasible search-space using these bounds. Steps 7–14 enforce
suitable constraints. Steps 8–10 enable spanning across the
3We do not argue that the bounds of this representative feasible space
are necessarily linear. The convex quadrilateral with straight edges is
only a logical representation and not an argument of linearity.

Figure 7. A gallery of diverse resultant grid layouts for a 12-element webpage design, generated by our MILP approach.

design space as identified by Π and Γ. Step 11 computes
the optimal grid layout solutions. Step 14 gradually loosens
the alignment constraint if required to ensure that sufficient
solutions are generated.

Implementation and computational performance
The model was coded in Python™ version 3.6. As our solver,
we use Gurobi™ on a commodity computer (8-core 64-bit
Intel™ i7™ processor 2.8 GHz with 16 GB RAM). The opti-
miser generates well-aligned and properly structured layouts
within a very short time. For example, 5 well-structured lay-
outs are produced within 2 seconds for a 5-element webpage
matching the template shown in Figure 5. For a 12-element
webpage design task, illustrated in Figure 7, the first 5 solu-
tions are generated within 5 seconds; 10–20 further solutions
are generated within 30 seconds. High performance is at-
tributed to the use of continuous variables in the MILP model.
Problem sizes are independent of the canvas size; they are
O(n2) polynomial functions of the number of elements. The
model lends itself to techniques that further improve perfor-
mance without compromising optimality.

STUDY 1: PERCEIVED QUALITY OF GRID LAYOUTS
Using our MILP approach, we can generate grid layouts with
controllable levels of grid quality. To validate our approach,
we assessed the quality of resulting layouts through a ratings-
based study. Here, we compared the computed optimality (by
optimiser) to the perceived quality (by real users).

Method
Participants: Recent research has concluded that expert and
novice participants alike can differentiate good designs from
bad ones [54]. Taking this into account, participation was
not restricted to designers. The study was conducted with
13 participants (7 male, 6 female), consisting of students and
researchers at a local university. Participants were between 22

and 39 years old (Mean 27, SD 5.28). 8 participants had some
educational or professional background in (UI) design and/or
HCI. Participation was under informed consent, and the study
adhered to European privacy laws (GDPR).

Procedure: Before the study, we generated a set of 24 layouts
for a 12-element case (Figure 7) in three distinct conditions of
optimality (8 designs per condition): (1) optimal (Mean opti-
mality = 98.2%), (2) sub-optimal (Mean optimality = 61.6%),
and (3) far-from-optimal (Mean optimality = 37.5%). All lay-
outs were generated solely using our grid layout objectives.
During the study, each sketch was presented on a display (15
inch Retina MacBook) sequentially. Presentation order was
randomised.

Task and Measurement: Participants were asked to rate a
series of user interface sketches, on a scale of 0 (very bad) to
100 (very good), for their perceived quality. They were asked
to think about well-designed web pages as a baseline. The
participants were free to use their own judgement and were
not biased by telling what well-formed or quality means.

Results
The means for optimal, sub-optimal, and far-from-optimal
designs were 72.12 (SD 21.53), 42.66 (SD 20.41), and 20.63
(SD 16.96), respectively. The effect of optimality on perceived
quality was tested with repeated-measures ANOVA. The ef-
fect was found to be significant, F(2,12)=213.10, p<0.0001.
Table 1 summarises these results and compares them with the
objected values used in our MILP approach. Post-hoc Tukey
test showed that optimal and sub-optimal conditions had sig-
nificant difference (p<0.0001), optimal and far-from-optimal
had significant difference (p<0.0001), and sub-optimal and
far-from-optimal also had significant difference (p<0.0001).

These results corroborate the efficacy of the MILP approach to
generate grid layouts with high perceived quality. It might be

https://F(2,12)=213.10

Category of instances Optimality (MILP)
Mean SD

Quality Rating
Mean SD

Optimal 98.2 3.31 72.12 21.53
Sub-Optimal 61.6 13.19 42.66 20.41
Far-from-Optimal 37.5 5.05 20.63 16.96

Table 1. Mean and standard deviations from MILP and from user rat-
ings. The optimality score had significant impact on user ratings.

noted that the quality rating from participants was consistently
lower than the computed optimality. This could be attributed
to the sketch-like appearance of displayed layouts, colouring
of elements, and personal preferences (as indicated by large
standard deviations).

THE GRIDS DESIGN TOOL
A key goal in the method has been to support interactive ex-
ploration of grid layouts. To investigate this in practice, we
integrated the MILP model and a solver into GRIDS, an inter-
active tool for wireframing (Figure 8). As designers sketch
layouts, the solver presents them with multiple suggestions
in real-time in an example gallery. This enables designers
to quickly detect good solutions and alternatives, and further
iterate upon them. The interface is composed of five regions:

1. Canvas: The canvas, sized according to the dimensions of
the target UI, is where the designer can concretely place
layout elements, defining their size as well as position.

2. Workspace: Adjacent to the canvas, the workspace is used
to specify elements without defining their actual position or
size. The workspace can also be used as spare working area
while moving elements around the canvas.

3. Element Properties Panel: The left panel is used to specify
element properties. This includes the element type (heading,
paragraph, image, etc.), colour, preferential placement, and
whether the element is locked in place. The panel also has
a button to trigger layout generation and optimisation.

4. Suggestions Panel: MILP-produced suggestions are dis-
played in an interactive example gallery [35] on the right
side. As the design task changes, this gallery is refreshed to
show updated results. Designers can scroll through several
suggestions, and edit, save, or delete them.

5. Saved Designs: At any point, the designer can either save
the current canvas, or designs from the suggestions panel.
These can be viewed, in a gallery, which also serves as a
timeline showing the evolution of design solutions.

Optimiser-Supported Functionalities
The generated suggestions aid designers during wireframing.
In particular, four key design tasks are supported by GRIDS:

1. Exploring diverse alternatives: As the designer speci-
fies layout elements by placing them into the workspace, a
diverse set of suggestions is generated and displayed in the
Suggestions panel. The designer can select from these, to
pick suitable starting points, and can continue iterating over
them to achieve a final design. While similar interactions have
been proposed previously (e.g. [55]), they could not guaran-
tee coverage of the entire design space. Typically, designers

Canvas Workspace

SuggestionsSaved DesignsElement Properties

Figure 8. The GRIDS tool presents optimiser-generated layout design
suggestions in an interactive example gallery to support wireframing.

tend to concentrate their solutions within small parts of the de-
sign space [12]. GRIDS circumvents this issue by facilitating
exploration of the entire design space (Figure 1.1).

2. Completing partial solutions: When designing a layout,
designers often may not have a strong idea on some elements,
while some might be pre-determined by the design brief, con-
ventions, or product requirements. For the optimiser, the main
challenge is then to complete the composition of a partial lay-
out. Completing partial designs has been explored for menu
design previously [2], where the design of sub-menus was
considered. Our tool supports this for grid layouts. Design-
ers can place well-defined elements onto the canvas, while
the remaining elements can be specified using the workspace
(illustrated in Figure 1.2). The optimiser produces results by
searching for optimal placements of workspace elements on
the partially-filled canvas, and displays a diverse set of com-
plete solutions in the Suggestions panel. To our knowledge,
this has not been shown with previous methods.

3. Finding nearby alternatives: Previous tools (e.g. [45,55])
have proposed techniques for finding refinements to a design.
Typically, these focus on providing ‘fixes’ to improve the
layout, but not on generating distinct alternatives. With GRIDS,
a designer can select any design solution, and request the
optimiser for ‘nearby’ alternatives that are close to the input
design, but with some variations (illustrated in Figure 1.3).

4. Finding solutions in constrained spaces: The Element
Properties panel provides designers with options for constrain-
ing the design space (Figure 9). Locking has been used pre-
viously (e.g. [2, 55]) to restrict some elements from being
modified. By default, canvas elements are flexible, giving the
optimiser some freedom in repositioning them to find optimal
grid layouts. Designers can use the lock button to fix selected
elements on the canvas, and prevent adjustments. Designers
can specify preferential placement of layout elements through
drop-down menus. For instance, they can specify elements as
headers or footers by assigning the vertical preference, or as
left/right sidebars by assigning horizontal preference.

Figure 9. Auto-completed solutions within a constrained sub-space can
be found by locking elements and specifying placement preferences.

STUDY 2: EVALUATION WITH DESIGNERS
To assess how our approach supports early-stage wireframing,
we conducted a study with designers. Our method follows
practices in design and creativity research [14]. We aimed
for 1) realistic design briefs; 2) a representative sample of
professional GUI designers; 3) a mixed-methods approach
that gauges both the process and the outcomes of design, in-
cluding designers’ opinions; and 4) the use of standardised
measurements, here for usability and creativity.

Method
Participants: We recruited a total of 16 participants. Their
age ranged from 22 to 34 years (Mean 29.4, SD 3.50). All
had formal design education (Mean 4.53 years, SD 2.32); 15
were professionally employed as designers (Mean 3.97 years,
SD 2.58), while one was still a student. All had experience
with digital design tools (Mean 7.44 years, SD 3.63). The de-
signers participated under informed consent. Throughout, the
European privacy law (GDPR) was followed. The participants
were compensated with two movie tickets.

Design tasks: The study consisted of three layout design
briefs: (1) a personal blog page with a list of required elements
(10 min), (2) an e-commerce page with freely chosen elements
(15 min), and (3) a free-form task, chosen by the designer,
representative of their typical professional design tasks (20
min). The three tasks ensured variety and sufficient level of
complexity to test the system critically. The third task allowed
the designers to freely decide on the type of layout they made,
so all participants could try out the tool in a natural layout
design situation they would normally encounter regardless of
their background.

Setup: The design tool ran on a MacBook Pro (macOS Mo-
jave 10.14.5). Participants used the tool with a 24 inch LED
display, Apple magic mouse, and Apple wireless keyboard.

Procedure: First, participants received a short introduction to
the tool and a practice task, where they were asked to complete
simple interactions with the tool. They were allowed to explore
the tool until they felt comfortable with it. The design tasks
listed above were then carried out. For each task, participants
were asked to create at least three final designs. They were
free to use the tool features as they wanted. To be as close
to pen-and-paper sketching as possible, the tool, in this study,
did not support explicit grouping of elements.

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300

Started editing
a suggestion

Scrolling through
the suggestions

Explicitly triggered
MILP optimiser

Timestamp (in seconds)

Figure 10. Timeline showing instances of participants triggering the op-
timiser, scrolling through suggestions, and editing them further.

Measurements: Each of the created designs had metadata on
whether it was optimiser-generated, edited by the user, and
saved as a final design. After the tasks, participants filled out
the System Usability Scale (SUS) questionnaire (without col-
laboration) [8], the Creativity Support Index (CSI) [10]. They
also rated usefulness of key features (5-point Likert scale), and
answered interview questions related to their experience with
the tool and the suggestions, and gave free feedback.

Quantitative results
We analysed the number of designs created by designers, as
well as scores from the SUS and CSI questionnaires.

Usage of Suggestions: When creating design solutions for
the three tasks, participants created a total of 13.75 designs
on average (SD = 4.59). They incorporated suggestions from
the optimiser, on average, in 44.17% (SD = 21.42) of their
final designs. 9 out 16 designers used the suggestions in over
50% of their designs, while only 3 designers sparingly used
the suggestions (in <20% of final designs). Users triggered the
optimiser, and referred to the suggestions at different stages of
the design process (early exploration and late refinements), as
illustrated in the timeline in Figure 10.

SUS and CSI: The mean SUS score was 71.79 (SD 13.95),
which according to recommendations can be considered ’good’
[5] The mean CSI score, which focuses on the tool as a whole,
was 53.04 (SD 13.58, score range 0-100) and scores for the
CSI factors (score range 0-20) were: enjoyment 11.88 (SD
4.29), exploration 12.38 (SD 3.69), expressiveness 9.31 (SD
3.50), immersion 11.5 (SD 3.46), results worth effort 11.88
(SD 3.54). The mean score is comparable to previous studies
using the scale, while exploration was higher than a recent
bandit-based system designed explicitly for exploration in
moodboard design [33].

Functionality ratings: Participants responded being able to
“sketch ideas quickly and freely with the tool” fairly well (3.81,
SD 1.22). The saved designs timeline was seen as very useful
(4.44, SD 0.89), and the separate canvas and workspace was
quite useful (3.75, SD 1.06). Participants found the explo-
ration feature itself somewhat useful (3.50, SD 1.15), while
the usefulness of the suggestions as starting points received
mixed feedback 2.8 (SD 1.33).

Qualitative results
Participants found the tool simple and easy to use overall. 8
out of 16 spontaneously commented on ease of use. Although
there were some shortcomings with the tool, because of it
being a prototype, most participants (11 out of 16) commented

that liked the idea of interactive layout exploration. Three
participants also pointed out that it is a new idea, “kind of a
new way of thinking about layouts” (P8).

Participants pointed out that the possible uses for exploration
were both in the beginning of the design process to get inspira-
tion, or to fit already existing content on a layout, and later in
the process to compare variations of existing layouts. Explo-
ration was especially seen as useful during early-stage design
(14 out of 16), as it could help “spur creativity and get away
from the obvious choices” (P2). Four participants commented
on fitting required content on a layout e.g. “sometimes you get
requirements of elements you have to fit in the page so the idea
of getting different possibilities of where the elements could
be is really nice”. For simple layouts, the exploration works
quite well, and participants found the suggestions useful: “If
you have a very simple layout you could take them just as they
were” (P3). For more complex layouts, the algorithm lacks
full support for more complex element hierarchies and groups,
resulting in suggestions being not very relevant to the design
at hand. Participants still said they could get inspiration from
those suggestions, but they required more editing: “as inspira-
tion to take parts of even though maybe the whole layout isn’t
useful” (P3). It encouraged the designer to think about “what
kind of layout would I design if that element was there” (P2).

Most participants reported preference for the availability of
grid suggestions. Many (7 out of 16) reported that they usually
sketch layout ideas with pen and paper, with most (15 out
of 16) also utilising digital tools, mainly Sketch and Adobe
applications. Some participants noted that while they could
explore their own ideas with these tools, they could not really
get new ideas and inspiration in the same way as with this
exploration tool. Exploration is “a feature that’s not avail-
able in the industry at this moment” (P13). Creating rough
layouts is “an important task you have to do all the time in
design so ... having such a tool makes sense” (P3). Four
participants said that they would like to use layout exploration
as an integrated part of an existing design tool. Some of the
most desired additions to exploration were element grouping,
additional exploration dimensions (e.g. colour, accessibility),
suggestions based on the layout type, and more settings for
elements.

SUMMARY
We presented a novel mixed integer linear programming
(MILP) method for generating grid layouts interactively. The
resulting layouts are well-formed, ensuring proper packing,
rectangularity, grouping, and preferential placement. We fur-
ther optimise for grid alignment, a factor correlated with aes-
thetic perception of layouts [43]. Grid generation at this level
of completeness has not been demonstrated with exact meth-
ods before. Study 1 validated the quality of generated layouts.
Owing to the MILP approach, we can quantify and control
how far grid layouts are from optimum and obtain a well-
distributed set across the design space. Moreover, we have
shown this approach to be efficient for interactive use. In
contrast to a recent paper that used black-box optimisation,
which throttled at problem sizes of 10 or more elements [55],
our model can easily handle such cases. We demonstrated

the feasibility of our approach by implementing it within the
GRIDS tool. Besides generating controllably diverse sets of
alternatives, it enables designers to enforce constraints over
the input, and supports features to explore diverse solutions,
exploit similar designs, and complete partial layouts. While
our approach could provide immediate benefit to novices by
facilitating grid-based layout design, we went a step further
to evaluate with designers, with professional experience, on
the topic. We received positive feedback from designers about
the support for layout exploration, especially during early
stages of design. We also observed active usage of optimised
suggestions in final designs.

LIMITATIONS AND FUTURE WORK
While our results show that MILP is a promising method to
help designers explore grid layouts, empirical data pinpoints
three opportunities for further improvements that can be built
on the approach. First, Study 2 exposed an issue with element
grouping, which made suggestions less relevant for problems
where maintaining original grouping was vital. While the
MILP model supports grouping, a designer would need to
put effort to express groups via the tool. Hence, two goals
for future work are, on the one hand, to develop efficient
interaction techniques for specifying grouping, and on the
other, to extend the MILP model to cover not only contiguity
as a visual cue, but also colour and other commonly-known
Gestalt principles [47].

Second, and related, while designers found the approach most
useful for early-stage exploration, it became relatively less
useful as the layout became more well-defined. One goal
for future work is to bridge the gap between early-stage grid
designs and higher-fidelity prototypes. MILP allows flexible
and extensible expression of new objectives and constraints,
however it insists on relaxed or linearised versions of design
objectives. Some key objectives that need to be identified
and formulated for MILP include selection and visual search
performance, as well as aesthetic objectives, such as colour
harmony and clutter. Finally, the optimisation system presently
does not learn. Our current optimisation model operates on
general grid layout principles. We foresee two possibilities
for tuning it using machine learning methods: (1) If one could
detect the designer’s “style” and whether the designer is ex-
ploring or exploiting (e.g., [33]), the suggestions could be
made even more relevant; (2) Data-driven approaches could be
used to learn layout styles typical to a domain and weigh the
parameters of the model to bias it toward that style (e.g, [62]).

OPEN CODE
We support further research efforts by providing full math-
ematical formulations in the Supplementary Material, and
an open code base, with instructions, on our project page:
https://userinterfaces.aalto.fi/grids.

ACKNOWLEDGMENTS
We thank all study participants for their time, and colleagues
and reviewers for their helpful comments. This work has
been funded by the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation
programme (grant agreement 637991).

https://userinterfaces.aalto.fi/grids

REFERENCES
[1] Greg J. Badros, Alan Borning, and Peter J. Stuckey.

2001. The Cassowary Linear Arithmetic Constraint
Solving Algorithm. ACM Trans. Comput.-Hum. Interact.
8, 4 (Dec. 2001), 267–306. DOI:
http://dx.doi.org/10.1145/504704.504705

[2] Gilles Bailly, Antti Oulasvirta, Timo Kötzing, and
Sabrina Hoppe. 2013. MenuOptimizer: Interactive
Optimization of Menu Systems. In Proceedings of the
26th Annual ACM Symposium on User Interface
Software and Technology (UIST ’13). ACM, New York,
NY, USA, 331–342. DOI:
http://dx.doi.org/10.1145/2501988.2502024

[3] Helen Y. Balinsky, Jonathan R. Howes, and Anthony J.
Wiley. 2009a. Aesthetically-driven Layout Engine. In
Proceedings of the 9th ACM Symposium on Document
Engineering (DocEng ’09). ACM, New York, NY, USA,
119–122. DOI:
http://dx.doi.org/10.1145/1600193.1600219

[4] Helen Y. Balinsky, Anthony J. Wiley, and Matthew C.
Roberts. 2009b. Aesthetic Measure of Alignment and
Regularity. In Proceedings of the 9th ACM Symposium
on Document Engineering (DocEng ’09). ACM, New
York, NY, USA, 56–65. DOI:
http://dx.doi.org/10.1145/1600193.1600207

[5] Aaron Bangor, Philip Kortum, and James Miller. 2009.
Determining what individual SUS scores mean: Adding
an adjective rating scale. Journal of usability studies 4, 3
(2009), 114–123.

[6] Eric A. Bier and Maureen C. Stone. 1986.
Snap-dragging. In Proceedings of the 13th Annual
Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH ’86). ACM, New York, NY,
USA, 233–240. DOI:
http://dx.doi.org/10.1145/15922.15912

[7] Alan Borning, Richard Lin, and Kim Marriott. 1997.
Constraints for the Web. In Proceedings of the Fifth
ACM International Conference on Multimedia
(MULTIMEDIA ’97). ACM, New York, NY, USA,
173–182. DOI:
http://dx.doi.org/10.1145/266180.266361

[8] John Brooke and others. 1996. SUS-A quick and dirty
usability scale. Usability evaluation in industry 189, 194
(1996), 4–7.

[9] Joel Chan, Pao Siangliulue, Denisa Qori McDonald,
Ruixue Liu, Reza Moradinezhad, Safa Aman, Erin T
Solovey, Krzysztof Z Gajos, and Steven P Dow. 2017.
Semantically Far Inspirations Considered Harmful?:
Accounting for Cognitive States in Collaborative
Ideation. In Proceedings of the 2017 ACM SIGCHI
Conference on Creativity and Cognition. ACM, 93–105.

[10] Erin Cherry and Celine Latulipe. 2014. Quantifying the
creativity support of digital tools through the creativity
support index. ACM Transactions on Computer-Human
Interaction (TOCHI) 21, 4 (2014), 21.

[11] Nicos Christofides and Eleni Hadjiconstantinou. 1995.
An exact algorithm for orthogonal 2-D cutting problems
using guillotine cuts. European Journal of Operational
Research 83, 1 (1995), 21 – 38. DOI:
http://dx.doi.org/https:
//doi.org/10.1016/0377-2217(93)E0277-5

[12] Nigel Cross. 2004. Expertise in design: an overview.
Design Studies 25, 5 (2004), 427 – 441. DOI:
http://dx.doi.org/https:
//doi.org/10.1016/j.destud.2004.06.002 Expertise in
Design.

[13] Emilie Danna, Mary Fenelon, Zonghao Gu, and Roland
Wunderling. 2007. Generating Multiple Solutions for
Mixed Integer Programming Problems. In Integer
Programming and Combinatorial Optimization, Matteo
Fischetti and David P. Williamson (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 280–294.

[14] Kees Dorst and Nigel Cross. 2001. Creativity in the
design process: co-evolution of problem–solution.
Design studies 22, 5 (2001), 425–437.

[15] William Drenttel and Jessica Helfand. 1999. Method and
system for computer screen layout based on a
recombinant geometric modular structure. (Aug. 1999).
https://patents.google.com/patent/US7124360B1/en

[16] Mathys C. du Plessis and Lynette Barnard. 2008.
Incorporating Layout Managers into an Evolutionary
Programming Algorithm to Design Graphical User
Interfaces. In Proceedings of the 2008 Annual Research
Conference of the South African Institute of Computer
Scientists and Information Technologists on IT Research
in Developing Countries: Riding the Wave of Technology
(SAICSIT ’08). ACM, New York, NY, USA, 41–47. DOI:
http://dx.doi.org/10.1145/1456659.1456665

[17] Bjorn N. Freeman-Benson, John Maloney, and Alan
Borning. 1990. An Incremental Constraint Solver.
Commun. ACM 33, 1 (Jan. 1990), 54–63. DOI:
http://dx.doi.org/10.1145/76372.77531

[18] Mathias Frisch, Sebastian Kleinau, Ricardo Langner,
and Raimund Dachselt. 2011. Grids & guides:
multi-touch layout and alignment tools. In Proceedings
of the 2011 annual conference on Human factors in
computing systems - CHI ’11. ACM Press, Vancouver,
BC, Canada, 1615. DOI:
http://dx.doi.org/10.1145/1978942.1979177

[19] Krzysztof Gajos, David Christianson, Raphael
Hoffmann, Tal Shaked, Kiera Henning, Jing Jing Long,
and Daniel S Weld. 2005. Fast and robust interface
generation for ubiquitous applications. In International
Conference on Ubiquitous Computing. Springer, 37–55.

[20] Krzysztof Gajos and Daniel S. Weld. 2004. SUPPLE:
Automatically Generating User Interfaces. In
Proceedings of the 9th International Conference on
Intelligent User Interfaces (IUI ’04). ACM, New York,
NY, USA, 93–100. DOI:
http://dx.doi.org/10.1145/964442.964461

http://dx.doi.org/10.1145/504704.504705
http://dx.doi.org/10.1145/2501988.2502024
http://dx.doi.org/10.1145/1600193.1600219
http://dx.doi.org/10.1145/1600193.1600207
http://dx.doi.org/10.1145/15922.15912
http://dx.doi.org/10.1145/266180.266361
http://dx.doi.org/https://doi.org/10.1016/0377-2217(93)E0277-5
http://dx.doi.org/https://doi.org/10.1016/0377-2217(93)E0277-5
http://dx.doi.org/https://doi.org/10.1016/j.destud.2004.06.002
http://dx.doi.org/https://doi.org/10.1016/j.destud.2004.06.002
https://patents.google.com/patent/US7124360B1/en
http://dx.doi.org/10.1145/1456659.1456665
http://dx.doi.org/10.1145/76372.77531
http://dx.doi.org/10.1145/1978942.1979177
http://dx.doi.org/10.1145/964442.964461

[21] Krzysztof Gajos and Daniel S Weld. 2005. Preference
elicitation for interface optimization. In Proceedings of
the 18th annual ACM symposium on User interface
software and technology. ACM, 173–182.

[22] Krzysztof Zygmunt Gajos and Daniel S Weld. 2008.
Automatically generating personalized user interfaces.
Citeseer.

[23] Krzysztof Z Gajos, Daniel S Weld, and Jacob O
Wobbrock. 2008. Decision-Theoretic User Interface
Generation.. In AAAI, Vol. 8. 1532–1536.

[24] Krzysztof Z Gajos, Jacob O Wobbrock, and Daniel S
Weld. 2007. Automatically generating user interfaces
adapted to users’ motor and vision capabilities. In
Proceedings of the 20th annual ACM symposium on
User interface software and technology. ACM, 231–240.

[25] Krzysztof Z Gajos, Jacob O Wobbrock, and Daniel S
Weld. 2008. Improving the performance of
motor-impaired users with automatically-generated,
ability-based interfaces. In Proceedings of the SIGCHI
conference on Human Factors in Computing Systems.
ACM, 1257–1266.

[26] Michael Gleicher. 1992. Briar: A Constraint-based
Drawing Program. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI ’92). ACM, New York, NY, USA, 661–662. DOI:
http://dx.doi.org/10.1145/142750.143074

[27] Stephen M. Hart and Liu Yi-Hsin. 1995. The application
of integer linear programming to the implementation of
a graphical user interface: a new rectangular packing
problem. Applied Mathematical Modelling 19, 4 (1995),
244 – 254. DOI:http://dx.doi.org/https:
//doi.org/10.1016/0307-904X(94)00033-3

[28] Hiroshi Hosobe. 2001. A Modular Geometric Constraint
Solver for User Interface Applications. In Proceedings
of the 14th Annual ACM Symposium on User Interface
Software and Technology (UIST ’01). ACM, New York,
NY, USA, 91–100. DOI:
http://dx.doi.org/10.1145/502348.502362

[29] Scott E. Hudson and Chen-Ning Hsi. 1993. A
synergistic approach to specifying simple number
independent layouts by example. In Proceedings of the
SIGCHI conference on Human factors in computing
systems - CHI ’93. ACM Press, Amsterdam, The
Netherlands, 285–292. DOI:
http://dx.doi.org/10.1145/169059.169221

[30] Allen Hurlburt. 1982. The Grid: A Modular System for
the Design and Production of Newpapers, Magazines,
and Books (1 edition ed.). Wiley, New York; Chichester.

[31] Charles Jacobs, Wilmot Li, Evan Schrier, David
Bargeron, and David Salesin. 2003. Adaptive
Grid-Based Document Layout. ACM Trans. Graph. 22,
3 (July 2003), 838–847. DOI:
http://dx.doi.org/10.1145/882262.882353

[32] Andreas Karrenbauer and Antti Oulasvirta. 2014.
Improvements to Keyboard Optimization with Integer
Programming. In Proceedings of the 27th Annual ACM
Symposium on User Interface Software and Technology
(UIST ’14). ACM, New York, NY, USA, 621–626. DOI:
http://dx.doi.org/10.1145/2642918.2647382

[33] Janin Koch, Andrés Lucero, Lena Hegemann, and Antti
Oulasvirta. 2019. May AI?: Design Ideation with
Cooperative Contextual Bandits. In Proceedings of the
2019 CHI Conference on Human Factors in Computing
Systems. ACM, 633.

[34] K. Koffka. 2013. Principles Of Gestalt Psychology.
Routledge. DOI:
http://dx.doi.org/10.4324/9781315009292

[35] Brian Lee, Savil Srivastava, Ranjitha Kumar, Ronen
Brafman, and Scott R. Klemmer. 2010. Designing with
Interactive Example Galleries. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI ’10). ACM, New York, NY, USA,
2257–2266. DOI:
http://dx.doi.org/10.1145/1753326.1753667

[36] Jianan Li, Jimei Yang, Aaron Hertzmann, Jianming
Zhang, and Tingfa Xu. 2019. LayoutGAN: Generating
Graphic Layouts with Wireframe Discriminators. In 7th
International Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
https://openreview.net/forum?id=HJxB5sRcFQ

[37] Andrea Lodi, Silvano Martello, and Michele Monaci.
2002. Two-dimensional packing problems: A survey.
European Journal of Operational Research 141, 2
(2002), 241 – 252. DOI:http://dx.doi.org/https:
//doi.org/10.1016/S0377-2217(02)00123-6

[38] Simon Lok and Steven Feiner. 2001. A Survey of
Automated Layout Techniques for Information
Presentations.

[39] Simon Lok, Steven Feiner, and Gary Ngai. 2004.
Evaluation of Visual Balance for Automated Layout. In
Proceedings of the 9th International Conference on
Intelligent User Interfaces (IUI ’04). ACM, New York,
NY, USA, 101–108. DOI:
http://dx.doi.org/10.1145/964442.964462

[40] Ellen Lupton. 2014. Thinking with type: A critical guide
for designers, writers, editors, & students. Chronicle
Books.

[41] Patrick J Lynch. 2008. Web style guide. Yale University
Press.

[42] Silvano Martello and Daniele Vigo. 1998. Exact
Solution of the Two-Dimensional Finite Bin Packing
Problem. Management Science 44, 3 (1998), 388–399.
DOI:http://dx.doi.org/10.1287/mnsc.44.3.388

[43] Aliaksei Miniukovich and Antonella De Angeli. 2015.
Computation of interface aesthetics. In Proceedings of
the 33rd Annual ACM Conference on Human Factors in
Computing Systems. ACM, 1163–1172.

http://dx.doi.org/10.1145/142750.143074
http://dx.doi.org/https://doi.org/10.1016/0307-904X(94)00033-3
http://dx.doi.org/https://doi.org/10.1016/0307-904X(94)00033-3
http://dx.doi.org/10.1145/502348.502362
http://dx.doi.org/10.1145/169059.169221
http://dx.doi.org/10.1145/882262.882353
http://dx.doi.org/10.1145/2642918.2647382
http://dx.doi.org/10.4324/9781315009292
http://dx.doi.org/10.1145/1753326.1753667
https://openreview.net/forum?id=HJxB5sRcFQ
http://dx.doi.org/https://doi.org/10.1016/S0377-2217(02)00123-6
http://dx.doi.org/https://doi.org/10.1016/S0377-2217(02)00123-6
http://dx.doi.org/10.1145/964442.964462
http://dx.doi.org/10.1287/mnsc.44.3.388

[44] Josef Müller-Brockmann. 1996. Grid Systems in
Graphic Design: A Visual Communication Manual for
Graphic Designers, Typographers and Three
Dimensional Designers (bilingual edition ed.). Niggli,
Zürich.

[45] Peter O’Donovan, Aseem Agarwala, and Aaron
Hertzmann. 2015. DesignScape: Design with Interactive
Layout Suggestions. In Proceedings of the 33rd Annual
ACM Conference on Human Factors in Computing
Systems (CHI ’15). ACM, New York, NY, USA,
1221–1224. DOI:
http://dx.doi.org/10.1145/2702123.2702149

[46] Stephen Oney, Brad Myers, and Joel Brandt. 2012.
ConstraintJS: Programming Interactive Behaviors for
the Web by Integrating Constraints and States. In
Proceedings of the 25th Annual ACM Symposium on
User Interface Software and Technology (UIST ’12).
ACM, New York, NY, USA, 229–238. DOI:
http://dx.doi.org/10.1145/2380116.2380146

[47] Stephen Palmer and Irvin Rock. 1994. Rethinking
perceptual organization: The role of uniform
connectedness. Psychonomic bulletin & review 1, 1
(1994), 29–55.

[48] Seonwook Park, Christoph Gebhardt, Roman Rädle,
Anna Maria Feit, Hana Vrzakova, Niraj Ramesh
Dayama, Hui-Shyong Yeo, Clemens N. Klokmose,
Aaron Quigley, Antti Oulasvirta, and Otmar Hilliges.
2018. AdaM: Adapting Multi-User Interfaces for
Collaborative Environments in Real-Time. In
Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems (CHI ’18). ACM, New
York, NY, USA, Article 184, 14 pages. DOI:
http://dx.doi.org/10.1145/3173574.3173758

[49] Mothersill Philippa and Bove V Michael. 2018. An
ontology of computational tools for design activities. In
Proceedings of DRS.

[50] David Pisinger and Mikkel Sigurd. 2005. The
two-dimensional bin packing problem with variable bin
sizes and costs. Discrete Optimization 2, 2 (2005), 154 –
167. DOI:http://dx.doi.org/https:
//doi.org/10.1016/j.disopt.2005.01.002

[51] Juan C. Quiroz, Sergiu M. Dascalu, and Sushil J. Louis.
2007. Human Guided Evolution of XUL User Interfaces.
In CHI ’07 Extended Abstracts on Human Factors in
Computing Systems (CHI EA ’07). ACM, New York, NY,
USA, 2621–2626. DOI:
http://dx.doi.org/10.1145/1240866.1241052

[52] Andrew Sears. 1995. AIDE: A Step Toward
Metric-based Interface Development Tools. In
Proceedings of the 8th Annual ACM Symposium on User
Interface and Software Technology (UIST ’95). ACM,
New York, NY, USA, 101–110. DOI:
http://dx.doi.org/10.1145/215585.215704

[53] Ivan E. Sutherland. 1963. Sketchpad: A Man-machine
Graphical Communication System. In Proceedings of

the May 21-23, 1963, Spring Joint Computer
Conference (AFIPS ’63 (Spring)). ACM, New York, NY,
USA, 329–346. DOI:
http://dx.doi.org/10.1145/1461551.1461591

[54] Kesler Tanner and James Landay. 2019. “I Know It
When I See It”: How Experts and Novices Recognize
Good Design. Springer International Publishing, Cham,
249–266. DOI:
http://dx.doi.org/10.1007/978-3-319-97082-0_13

[55] Kashyap Todi, Daryl Weir, and Antti Oulasvirta. 2016.
Sketchplore: Sketch and Explore with a Layout
Optimiser. In Proceedings of the 2016 ACM Conference
on Designing Interactive Systems (DIS ’16). ACM, New
York, NY, USA, 543–555. DOI:
http://dx.doi.org/10.1145/2901790.2901817

[56] Andrew C. Trapp and Renata A. Konrad. 2015. Finding
diverse optima and near-optima to binary integer
programs. IIE Transactions 47, 11 (2015), 1300–1312.
DOI:http://dx.doi.org/10.1080/0740817X.2015.1019161

[57] L. Weitzman and Kent Wittenburg. 1994. Automatic
Presentation of Multimedia Documents Using Relational
Grammars. In Proceedings of the Second ACM
International Conference on Multimedia
(MULTIMEDIA ’94). ACM, New York, NY, USA,
443–451. DOI:
http://dx.doi.org/10.1145/192593.192718

[58] Laurence A Wolsey. 1998. Integer programming. Wiley.

[59] Pengfei Xu, Hongbo Fu, Takeo Igarashi, and Chiew-Lan
Tai. 2014. Global Beautification of Layouts with
Interactive Ambiguity Resolution. In Proceedings of the
27th Annual ACM Symposium on User Interface
Software and Technology (UIST ’14). ACM, New York,
NY, USA, 243–252. DOI:
http://dx.doi.org/10.1145/2642918.2647398

[60] Clemens Zeidler, Christof Lutteroth, and Gerald Weber.
2012a. Constraint Solving for Beautiful User Interfaces:
How Solving Strategies Support Layout Aesthetics. In
Proceedings of the 13th International Conference of the
NZ Chapter of the ACM’s Special Interest Group on
Human-Computer Interaction (CHINZ ’12). ACM, New
York, NY, USA, 72–79. DOI:
http://dx.doi.org/10.1145/2379256.2379268

[61] Clemens Zeidler, Johannes Müller, Christof Lutteroth,
and Gerald Weber. 2012b. Comparing the Usability of
Grid-bag and Constraint-based Layouts. In Proceedings
of the 24th Australian Computer-Human Interaction
Conference (OzCHI ’12). ACM, New York, NY, USA,
674–682. DOI:
http://dx.doi.org/10.1145/2414536.2414638

[62] Xinru Zheng, Xiaotian Qiao, Ying Cao, and Rynson WH
Lau. 2019. Content-aware generative modeling of
graphic design layouts. ACM Transactions on Graphics
(TOG) 38, 4 (2019), 133.

http://dx.doi.org/10.1145/2702123.2702149
http://dx.doi.org/10.1145/2380116.2380146
http://dx.doi.org/10.1145/3173574.3173758
http://dx.doi.org/https://doi.org/10.1016/j.disopt.2005.01.002
http://dx.doi.org/https://doi.org/10.1016/j.disopt.2005.01.002
http://dx.doi.org/10.1145/1240866.1241052
http://dx.doi.org/10.1145/215585.215704
http://dx.doi.org/10.1145/1461551.1461591
http://dx.doi.org/10.1007/978-3-319-97082-0_13
http://dx.doi.org/10.1145/2901790.2901817
http://dx.doi.org/10.1080/0740817X.2015.1019161
http://dx.doi.org/10.1145/192593.192718
http://dx.doi.org/10.1145/2642918.2647398
http://dx.doi.org/10.1145/2379256.2379268
http://dx.doi.org/10.1145/2414536.2414638

	Introduction
	Related Work
	Facilitating the creation of grid layouts
	Grid generation by constraint solving
	Grid generation by combinatorial optimisation
	Interactive layout generation
	Summary

	The Grid Layout Problem
	Mixed Integer Linear Programming (MILP) Model
	Core MILP formulation for grid skeletons
	Ensuring overall alignment
	Ensuring rectangular outline
	Ensuring preferential placement of elements
	Generating controllably diverse solutions
	Summary
	Implementation and computational performance

	Study 1: Perceived Quality of Grid Layouts
	Method
	Results

	The Grids Design Tool
	Optimiser-Supported Functionalities

	Study 2: Evaluation with Designers
	Method
	Quantitative results
	Qualitative results

	Summary
	Limitations and Future Work
	Open Code
	Acknowledgments
	References

