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Figure 1. This paper presents an integer programming approach for interactively generating grid layouts, enabling designers to (1) systematically 
explore a diverse set of starting solutions, (2) find solutions to partially-completed designs, and (3) search for local alternatives and within sub-spaces. 

ABSTRACT 
Grid layouts are used by designers to spatially organise user 
interfaces when sketching and wireframing. However, their 
design is largely time consuming manual work. This is chal-
lenging due to combinatorial explosion and complex objec-
tives, such as alignment, balance, and expectations regarding 
positions. This paper proposes a novel optimisation approach 
for the generation of diverse grid-based layouts. Our mixed 
integer linear programming (MILP) model offers a rigorous 
yet efficient method for grid generation that ensures packing, 
alignment, grouping, and preferential positioning of elements. 
Further, we present techniques for interactive diversification, 
enhancement, and completion of grid layouts (Figure 1). These 
capabilities are demonstrated using GRIDS1, a wireframing 
tool that provides designers with real-time layout suggestions. 
We report findings from a ratings study (N = 13) and a design 
study (N = 16), lending evidence for the benefit of computa-
tional grid generation during early stages of design. 
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CCS Concepts 
•Human-centered computing → User interface design; 

INTRODUCTION 
The design of graphical user interfaces (GUIs) commonly em-
ploys grid layouts [40] – spatial structures defined by grid 
lines. Grid lines simplify layout design by guiding the sizes 
and positions of GUI elements. Grids serve as a mechanism for 
evaluating and deciding their spatial organisation, including 
considerations of visual importance, grouping, relative posi-
tioning, and flow. Grid layouts are used across various stages 
of design, from sketching and wireframing to prototyping and 
deployment (Figure 2). 

The design of grid-based layouts is mostly manual and left 
to the designer. Although present-day tools provide function-
alities such as grid templates, grid-snapping, and usability 
hints [41], they mostly do not offer computational layout gen-
eration. Editing involves repetitive manual work including 
resizing and reorganising. Design is also combinatorially 
challenging. There exists a large number of possibilities for 
organising a given set of elements into a grid, and a good grid 
layout must meet several objectives [34, 39]. Changing one 
element may necessitate reorganisation of many others. 

Computational generation of grid layouts has the potential 
to support designers in the creative process of layout design, 
helping them synthesise, envision, and evaluate [49]. Access 
to diverse but relevant computationally generated suggestions 
could help them in exploring and enhancing designs [55], 
thus avoiding too early fixation [9]. Moreover, need for man-
ual editing could be reduced if computer-generated designs 
were able to suggest completions to partially finalised designs. 
However, the algorithmic problems involved are non-trivial. 
Any such method must efficiently search within a very vast 
design space while reacting to real-time changes made by the 
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designer. Prior to this work, it has not been known how to best 
define core features of a good grid layout. The more design 
objectives and concerns one can incorporate into the math-
ematical system, the less final editing is left to the designer. 
However, it is not known how to combine objectives that to-
gether ensure performant and aesthetically pleasing layouts. 
Elements must be well-aligned, key elements easily reachable, 
related elements logically grouped together, and so on. 

We propose a mathematical formulation of the grid layout 
problem that enables real-time generation and exploration of 
layout designs with a designer in the loop. Our approach 
is based on integer programming (IP) [58]. One benefit of 
IP—a so-called exact method—over random-search (black-
box) based approaches is that the key features of the expected 
outputs can be guaranteed. If a solution exists, it will be found. 
Further, we use a combination of continuous and discrete 
decision variables, thus resulting in a mixed integer linear 
programming (MILP) formulation. In our model, continuous 
decision variables are used for element placement and sizing, 
and discrete decision variables are used to define the relative 
positions of elements with reference to each other. Doing so 
makes the model independent of canvas-size and element-size, 
drastically reducing the number of discrete variables required. 
Our formulation strictly uses linear expressions (all constraints 
and in objectives), making the model computationally fast and 
enabling interactive use even for larger-sized problems. 

Our MILP model guarantees proper packing: all elements 
fit on the canvas without overflowing or overlapping. In a 
single model, it further addresses other design goals such 
as: (1) the outer hull is rectangular, (2) there are no holes, 
(3) elements are well-aligned [43], (4) related elements are 
grouped together, and (5) preferred positions are obeyed to 
provide visual connectivity [4]. Prior works on computational 
grid generation [3, 52] have mostly addressed one or few of 
these key properties at a time. As IP provides bounds for its 
solutions, designs can be guaranteed to be within specified 
range (say within 5%) from the best achievable design. We 
exploit this for generation of controllably diverse designs. 

Our approach offers several benefits as a computational 
method. First, many necessary layout properties are included 
in the formulation, reducing effort for the designer. Second, 
making the model canvas-size independent results in a direct 
advantage. Previously-employed approaches (e.g. [55]) mostly 
relied on discretisation of the canvas. For example, a prob-
lem of 5 elements placed on an 800×600 pixel canvas would 
require around 2.4 million discrete decision variables and con-
straints to ensure a non-overlapping and well-aligned layout. 
For the same 5-element problem, our MILP model requires 
only 110 discrete and 20 continuous decision variables. Such 
problems can now be solved to generate high quality grid lay-
out solutions within few seconds using commodity hardware. 
Finally, black box methods for multi-objective optimisation 
often yield an unbalanced sample from the so-called Pareto 
front. In other words, many solutions may be too similar with 
each other to be informative. In contrast, we build on the 
exact MILP formulation to guarantee diverse solutions that are 
individually well-performing – that is, close to optimal for all 

Figure 2. Grid layouts are used to organise visual elements in different 
stages of design. Left: Examples of grid layout templates; Right: A Web 
interface following a CSS-based grid template (www.nytimes.com). 

objectives – and space-spanning, i.e. diverse in a systematic 
way. This enables designers to explore good alternatives more 
efficiently. 

These properties support integration within interactive design 
tools. To demonstrate this, we present GRIDS, an interac-
tive wireframing tool that encapsulates our MILP approach 
to present real-time design suggestions. Designers can use 
GRIDS for exploring and improving grid layouts with little 
effort. As illustrated in Figure 1, auto-generated suggestions 
help designers to interactively (1) explore a diverse set of 
starting points towards solving a layout problem, (2) find 
completed solutions for partially-designed layouts, (3) exploit 
nearby alternatives and solutions within a specified subspace 
of the design space. All suggestions are presented in an in-
teractive example gallery [35], with the idea that designers 
quickly recognise good designs (see [54]). We assess these 
capabilities empirically with professional designers, reporting 
quantitative and qualitative feedback. The results indicate that 
this approach can assist designers in the exploration of GUI 
layouts in realistic design tasks. 

To sum up, the key contributions of this paper are: 

1. A fast and comprehensive mixed-integer linear program-
ming (MILP) model for grid layout generation. 

2. Further computations for diversification, intensification, and 
completion of partial solutions. 

3. Demonstration of interactive grid generation in the GRIDS 
tool, and evaluation with 16 professional designers. 

RELATED WORK 
The grid layout is a spatial organisational principle [30] de-
veloped post-WWII [44]. We here focus on rectangular grids 
typical in the design of graphical user interfaces (GUIs). 

Facilitating the creation of grid layouts 
Grid layouts are utilised as a design principle in many toolkits 
and layout managers [38], which offer interactive aids like grid-
snapping and auto-alignment. A ruler-and-compass metaphor 
has been used [6] to aid in precise placement. Here, heuristics 
to automatically place guiding lines and circles were used, 
helping users construct grid-adhering shapes. Interactive grids 
and multi-touch alignment guides have also been presented to 
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guide grid positioning [18]. A method for global beautification 
has been presented that infers relationships between layout 
elements, and fixing issues such as misalignment [59]. Users 
can interactively refine the layout by resolving ambiguity and 
adding constraints. While these techniques assist with grid de-
sign and alignment, layout construction is left to the designer. 
Design tools also often offer grid templates: predefined lay-
outs where content can be added [15]. However, templates 
insist that contents are made to fit them, and they are limited 
to a small set of pre-defined layouts. 

Grid generation by constraint solving 
Since its first introduction in Sketchpad [53], constraints 
that can aid in the design of layouts has been a topic of re-
search [7, 26, 31, 46]. Layout constraints can define bounds 
on elements, or relationship between elements. A constraint 
solver manipulates element properties to best satisfy the spec-
ified constraints. One method is to solve layout constraints 
incrementally [17]. It can satisfy changing constraint hierar-
chies consisting of hard and soft constraints in an efficient 
manner. Relational grammars can be further added to encode 
design knowledge [57]. This can address the logical com-
position of elements during layout generation. Chorus [28] 
addressed non-linear geometric constraints such as Euclidean 
geometric, non-overlapping, and graph layout constraints. It 
also discussed soft constraints with hierarchical strengths or 
preferences. Cassowary [1] implemented a linear arithmetic 
constraint solver to adapt layout to changing sizes. This has 
also been implemented in some commercial systems such as 
Apple’s Auto Layout2, enabling GUIs to dynamically adjust 
their layouts when window or screen dimensions changed. A 
benefit of constraint solving is that a layout can be defined by 
means of simple constraints. On the other hand, specifying 
a layout fully using just constraints quickly becomes com-
plex [61]. To our knowledge, no constraints-based method 
has been proposed that ensures proper packing of elements 
and takes care of objectives like alignment, rectangularity, and 
grouping. Lacking this, designers may need to modify layouts 
manually or fix remaining aspects programmatically. 

Grid generation by combinatorial optimisation 
Combinatorial optimisation methods can find solutions, from 
a large design space, that satisfy a stated design objectives. 
Within the area of combinatorial geometry, grid layout has 
been studied in the context of 2D bin packing [37,42,50], rect-
angular packing [27], and the guillotine cuts problem [11]. An 
elementary version of the grid design problem has been previ-
ously proposed [27], but it merely attempts to find the most 
densely packed solution whereby the elements are squeezed 
together as closely as possible; there is no attempt to address 
aesthetics (like alignment) and no intent to explore multiple 
layouts. Optimisation has been used for resizing GUI ele-
ments [60], with the focus being on improving aesthetics of a 
layout by making subtle changes when the available space is 
varied. Previous research has also looked into generating opti-
mised grid-based layouts. AIDE is a metrics-based tool to aid 
design and evaluation of UIs [52]. It included objectives such 
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as balance, efficiency, and constraints. The optimiser com-
puted a layout grid and used this to organise widgets. ADL is 
a layout engine that dynamically constructed grid layouts [3]. 
Given static elements, it filled up the remaining area with dy-
namic content . Typically, these approaches compute a single 
point-optimal solution. Following earlier findings, we believe 
it is necessary to present designers with a diverse range of 
solutions [2, 55]. However, random-search based optimisa-
tion methods do not support generation of controllably diverse 
results. IP-based approaches have been previously used to 
generate, for example, keyboard layouts [32]. This allows for 
a structured search process and guaranteed bounds, thus im-
proving outcomes and increasing designer confidence. More 
recently, AdaM employed IP to distribute UIs in multi-user 
environments [48]. While the formulation does address lim-
ited display size, the objectives, constraints, and applications 
differ substantially from ours. 

SUPPLE and ARNAULD constitute the seminal literature 
concerning personalised UI generation [19–21, 23–25]. The 
systems automatically generate interfaces through a branch-
and-bound optimisation technique that is flexible enough to 
adapt to various objectives by modifying the underlying cost 
function. Our work differs from this line of work in three 
key aspects: (1) Input: SUPPLE and its descendants require 
functional specifications as input. This is beneficial for appli-
cation developers as they only need to specify what functions 
are exposed to users. On the contrary, our work targets UI 
designers who already have some ideas about desired layouts. 
It enables designers to define the design task by demonstra-
tion, including element types, and preferences regarding size 
and placement. (2) Layouting: When rendering an interface 
layout, SUPPLE used three heuristics to sequentially decide 
the layout – bottom-up, top-down, and minimum remaining 
values [22]. The key objective was to find a layout that satisfies 
user preferences, abilities, and device constraints. In contrast, 
our MILP formulation aims at constructing well-formed grid 
layouts, with desirable aesthetics, by considering the entire 
composition of the canvas. (3) Output: SUPPLE and others 
aim at producing a single point-optimal design for end-users. 
In contrast, our MILP approach generates multiple diverse 
solutions for mixed-initiative design tools. 

Interactive layout generation 
Computational techniques have been proposed for designing 
layouts with designer in the loop. DesignScape [45] supports 
enhancement and exploration of single-page layouts using 
energy-based optimisation. The design principles here are 
limited to those learnt from a small set of examples, and op-
timisation is computationally-expensive. Sketchplorer [55] 
supports exploring, enhancing, and recolouring layouts. How-
ever, it employs black-box optimisation on a discrete canvas, 
which does not scale, resulting in poor performance for com-
plex design tasks. Moreover, it does not address objectives 
of good grid layouts, such as rectangularity, alignment, or 
preferential placement. Genetic algorithms have been used 
to iteratively select promising interfaces from a collection of 
candidates [16]. Various constraints had to be placed to pre-
vent inappropriate groupings in the layout, and to reduce the 
number of selections. Data-driven approaches enable layout 
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generation without requiring problem specification [36, 62]. 
However, results are limited to the domain of the training 
dataset, and offer no quality guarantees. In what comes close 
to our aims, a semi-automatic grid-based technique has been 
previously proposed [29]. Here, users constructed an example 
layout, which, as in this paper, was represented as an algorith-
mic task to generate layouts of any size. New examples were 
presented to the user, enabling them to steer the generation. 
Interactive genetic algorithms have also been used [51] to 
generate grid layouts that address contrast between elements, 
and some alignment issues. However, aspects such as rectan-
gularity, and preferential placement were not addressed, thus 
leaving these aspects to the designer. Our work proposes a 
more complete formulation that takes into account these key 
aspects of a well-formed grid layout. 

Summary 
Previous works have studied aspects of grid-based layouts 
individually, and provided point solutions to some features 
(packing, alignment, etc). This paper is the first attempt to 
combine key objectives within one compact formulation while 
guaranteeing the quality of layouts, providing diverse space-
spanning solutions, and real-time performance. 

THE GRID LAYOUT PROBLEM 
The computational problem in generating grid layouts can be 
defined as follows: 

Given a set of rectangular elements that must be placed onto 
a fixed size canvas with specified widths and heights, find 
feasible solutions where all elements are properly packed 
in a non-overlapping and non-overflowing layout. 

In our work, we formulate the following objectives (Figure 3): 

1. Overall alignment: A well-formatted layout places as 
many/most of its elements aligned to each other edge-wise. 

2. Rectangular outline: An outline with jagged edges, a lop-
sided hull, or any non-convex arrangement, is aesthetically 
undesirable. The overall outline induced by the layout of 
elements must approach a rectangular external hull. 

3. Placement: We prefer to place interrelated elements in 
close proximity to each other. This transition objective 
manifests itself in three ways: 
(a) Traversal Distance: If users often need to navigate 

between a pair of UI elements (for example, a text 
box and an associated button), it is preferable that the 
distance between these elements be minimised. 

(b) Grouping: A contiguous placement should be ensured 
for semantically or otherwise related items. 

(c) Preferential Placement: A designer may want a spe-
cific element be placed definitely on a specific side of 
some other element, or at a specific point (locked) on 
the canvas. For example, the ‘Search’ button may be 
expected to be on the right side of a text entry field. 

For interactive design, in addition to the above objectives, we 
cover techniques to: (1) systematically diversify designs, (2) 
respect pre-defined canvas elements when completing partial 
designs, and (3) search locally for enhancements. 

Figure 3. Key objectives in the grid layout formulation. (1) Alignment: 
red lines indicate misalignment issues; (2) Rectangularity: red lines in-
dicate a non-rectangular outline of the grid; (3) Preferential placement: 
red borders highlight elements not placed at preferred positions. (4) A 
valid solution that conforms to all objectives. 

The following section provides the core MILP formulation, 
along with specific formulations to address each of the objec-
tives. 

MIXED INTEGER LINEAR PROGRAMMING (MILP) MODEL 
In this section, we highlight key mathematical concepts that 
enable us to generate solutions for the defined grid layout 
problem. The complete mathematical formulation is included 
in the Supplementary Material. 

Overview: We propose an optimisation model whose size 
depends on the number of elements alone; the number of de-
cision variables and constraints in our model is independent 
of the canvas and other factors. Further, we make an explicit 
distinction between the (1) the core MILP formulation, which 
only generates properly packed grid skeletons, and (2) the 
other objectives. The core MILP assures a non-overlapping 
non-overflowing grid with elements placed within permissible 
size limits in permissible locations. These candidate solu-
tions from the core MILP may not be good, well-aligned or 
aesthetically acceptable. Rather, the other requirements of 
alignment, external outline, etc. are enforced over the core 
MILP skeleton by plugging in as objective functions or as 
additional constraints. 

Core MILP formulation for grid skeletons 
We define our coordinate system such that the origin/reference 
point is the top left corner of the canvas. The X axis is positive 
rightwards and the Y axis is positive downwards. Continuous 
decision variables Le ,Re ,Te ,Be represent the location of the 
left, right, top and bottom edges of individual element e. Deci-
sion variables We ,He represent the actual width and height. 
These variables ensure proper sizing and prevent overflow. We 
note that the variables L , R , T , B are not binary and do 
not involve discretisation of pixels or locations. This factor is 
critical for the performance of the solver. 

Next, we prevent overlap using the following two binary deci-
sion variables adapted from an MILP approach [27] that was 
originally introduced for the rectangular packing problem: 
Γe −→ Indicates e is placed anywhere above ē ē 
Πeē −→ Indicates e is placed to the left side of ē 

The interpretation of Γe is that the bottom edge Be of element ē 
e is less than or equal to the top edge Tē of element ē. Sim-
ilarly, the interpretation of Πeē is that the right edge Re of 
element e is less than or equal to the left edge Lē of element ē. 



Either of these decision variables Γ and Π effectively slice the 
space around any element into two half-spaces. Overlap avoid-
ance practically means that any other element must completely 
lie within one of those half-spaces. Then the variables Γ and 
Π are sufficient to prevent overlap of any pair of elements via 
the following constraints: 

e1 ≤ Γe + Γ ¯
ee ≤ 2 . . .∀e, ē ∈ Eē e + Πeē + Π ¯ (1) 

Tē ≥ Be + H (Γe − 1) . . . ∀e, ē ∈ Eē (2) 
Lē ≥ Re + W (Πeē − 1) . . .∀e, ē ∈ E (3) 
W Πeē ≥ Lē − Re . . .∀e, ē ∈ E (4) 
H Γe 

ē ≥ Tē − Be . . .∀e, ē ∈ E (5) 

Equations (2)–(5) are ‘plumbing’ constraints that logically 
connect the element edge locations to the Π and Γ variables. 
There are four possible cases for two non-overlapping ele-
ments e and ē: (i) e above ē, (ii) e below ē, (iii) e left of ē, 
or (iv) e right of ē. Equation (1) is the crux of the overlap 
prevention, which ensures that for any pair of elements, at 
least one of these cases is satisfied. This core formulation 
yields non-overflowing non-overlapping layouts with element 
sizes within their prescribed limits. 

Ensuring overall alignment 
To model overall alignment, we define notional Cartesian grid-
lines over all pixels of the canvas. For any feasible solution, 
only those grid-lines are relevant where at least one element 
edge occurs. If two or more elements have any of their edges 
aligned with each other, those elements share a single grid-line 
for those edges. So, the total number of grid-lines actually 
utilised in any feasible solution quantifies the overall align-
ment within that solution. Poorly aligned feasible solutions 
require a larger number of grid-lines. Designers prefer well-
aligned solutions and this objective translates to minimisation 
of the total number of grid-lines required. 

Consider a candidate solution where one edge of element 
e and the corresponding edge of element ē are aligned. Then 
we designate set {e,ē} as an Aligned Group. Formally, we 
define an Aligned Group as a set of elements whose one cor-
responding edge is aligned for the given candidate solution. 
An aligned group may be a singleton (containing only one ele-
ment) or may contain all elements from E . The four distinct 
types of aligned groups are: 

If the left edge of elements e, ē, . . . are aligned, then we 
designate set {e,ē,. . . } as a Left-Group abbreviated as LG. 

If the right edge of elements e, ē, . . . are aligned, then we 
designate set {e,ē,. . . } as a Right-Group abbreviated as RG. 

If the top edge of elements e, ē, . . . are aligned, then we 
designate set {e,ē,. . . } as a Top-Group abbreviated as TG. 

If the bottom edge of elements e, ē, . . . are aligned, then set 
{e,ē,. . . } is designated as Bottom-Group abbreviated as BG. 

For every alignment-group, we define the value as the distance 
of the relevant edge of all its constituent elements from the 
corresponding axis. Decision variable V i indicates value of 
the ith alignment group. Every element e belongs to exactly 
one LG, one RG, one TG and one BG. The four values of 

A
B

D

C

Elements A, B, C form a
Top-aligned Group (TG)

If the right side (RG) were 
known, element B could
 be completely defined.

Elements B, D form a
Left-aligned Group (LG)

Elements B, C form a Bottom-aligned Group (BG)

Figure 4. Alignment groups specify relative placement of groups of ele-
ments. An element is completely defined if it belongs to four such groups. 

these four alignment-groups match the edge locations Le , 
Re , Te and Be of element e. So, the four alignment-groups 
of any element are sufficient to define the location and size 
of that element. The overall layout is completely defined if 
the alignment-groups information is known for all elements. 
The solver decides which alignment-groups are required in 
the solutions, the value of each group, and membership infor-
mation (elements belonging to that group). The concept of 
alignment-groups is illustrated in Figure 4. 

Ensuring rectangular outline 
Consider a layout of n elements involving m number of LGs. 
No two LGs can share the same left-side value (otherwise 
they will become one single LG). So, we can identify the 
specific LG that has the minimum left-most value. This LG 
identifies the extreme-left side of the outline hull of the overall 
layout. Similarly, we identify the right-most, top-most and 
bottom-most alignment groups. Together, these extremities 
define the smallest rectangular outline (SRO) that would have 
covered the layout. In general, this SRO is not the immediate 
boundary of the layout. The actual boundary of the layout is a 
slightly smaller (potentially concave) shape within this SRO. 
The difference between the true outline and the SRO is what 
makes the outline non-rectangular. We explore several options 
to minimise and penalise this undesirable difference between 
the true outline and the SRO: 

1. Adherence to extremity: We identify the alignment-
groups that define the SRO. The elements aligned to the 
SRO do not disturb the rectangularity. So, our objective 
function rewards every case where an edge fits the SRO. 

2. Penalise non-extremity: Consider an element x whose 
right-most edge is at distance D from the right-side of SRO. 
Further, there is no element y to the right-side of element 
x. We ascribe the gap D to element x alone and penalise 
element x proportional to gap D. 

3. Virtual elements: We define virtual elements to fill any 
non-rectangular area (to be penalised). We penalise the 
existence of such virtual elements. This approach involves 
non-linearity and carries higher computational cost. 

The first approach is sufficient for the grid layout problem. We 
compute the maximum possible number of cases where an 
edge of an element aligns with the extreme edges. Thereafter, 



Figure 5. When diversity is not controlled, similar designs are generated. 

we ensure that the actual layouts generated must continue with 
(a slightly loosened approximation of) this maximum number. 

Ensuring preferential placement of elements 
A pair of elements e and ē can be placed relative to each 
other using Π and Γ decision variables. Elements can also 
be placed relative to the canvas. For example, consider that 
element e is marked to be the header of the canvas. This 
means that e must necessarily lie above all other elements. In 
some cases, it is permissible that ē may be placed parallel to 
(but not above) the header. All such conditions can be enabled 
by enforcing that no element ē may ever be placed above the 
header e. Finally, elements can also have fixed positions on 
the canvas using similar mechanisms. 

Generating controllably diverse solutions 
While there has been some work in generating diverse layouts 
[45, 55], it has been hard to accurately estimate how different 
designs are, with respect to each other. Figure 5 illustrates 
this problem. It shows some very similar solutions produced 
because the design space is not systematically spanned. 

We build upon concepts from literature [13, 56] for system-
atically spanning the design space. Specifically in our case, 
the summation of non-negative values of Π and of Γ consti-
tutes a rigorous two-dimensional distance metric. We use this 
metric to efficiently span the design space by controlling the 
amount of dissimilarity required between different solutions. 
Our procedure to obtain a wide variety of diverse solutions 
is as follows: First, we solve the optimisation problem while 
optimising for the criterion of best grid layout. We obtain the 
minimal number of grid-lines and designate this as O. Then 
we add a constraint that the permissible number of grid lines 
may not exceed O + 1 and we optimise for a rectangular out-
line. In case we do not get a rectangular outline, we loosen 
the constraint of permissible number of grid lines to O + 2 
and so on. After getting a rectangular outline, we count the 
number of cases for adherence to external rectangular hull and 
set that as a new constraint. These two constraints in conjunc-
tion assure a well-formatted layout with clean grid-lines and 
rectangular outline. Next, we focus on generating multiple 
different solutions. We solve the optimisation problem again, 
this time to maximise the value of ∑Γ. We designate the re-
sulting objective value as Γmax. Then, we minimise ∑Γ to find 
Γmin. Similarly, we compute Πmax and Πmin. After computing 
these four boundary values, we consider them as the four car-
dinal vertices of a conceptual polygon drawn in the 2-D space 
induced by the interval [Γmin,Γmax] and [Πmin,Πmax]. This 
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Figure 6. The feasible space, visualised conceptually as a quadrilateral, 
can be systematically spanned to generate a diverse set of solutions. 

quadrilateral-shaped feasible space3 is illustrated in Figure 
6. We seek solutions well spaced across this quadrilateral 
by enforcing constraints on permissible values of ∑Γ, ∑Π. 
Successive points in this interval yield solutions that are suf-
ficiently distinct and yet satisfy the alignment requirements 
discussed earlier. Figure 7 illustrates diverse solutions for 
a sample input design. Systematic spanning of the design 
space also enables us to search for local improvements in the 
neighbourhood of a design. 

Algorithm 1 : Procedure to generate grid layouts 
Input: Data instance involving n elements 

1: F := {}
2: Γmax,Γmin := Extremal values of Γ by core MILP 
3: Πmax, Πmin := Extremal values of Π by core MILP 
4: εmin := Optima value by minimising ∑ε 
5: Rmin := Optimal number of cases for overall rectangular 

outline using core MILP 
6: Use εmin,Γmax,Γmin,Πmax,Πmin,Rmin to augment core 

MILP formulation 
7: while (kFk < Required number of solutions) do 
8: for all Γval ∈ [Γmin,Γmax do 
9: for all Πval ∈ [Πmin,Πmax] do 

10: Enforce Γval ,Πval 
11: f ←− Optimal solution of core MILP with 

current constraints 
12: F = (F ∪{ f }) 
13: Remove Γval ,Πval constraints 
14: Loosen alignment constraint (εmin) by unit value 
Output: Set F of feasible grid layouts 

Summary 
The full solution procedure, outlined in Algorithm 1, involves 
repeated application of the core MILP formulation. Steps 2–5 
execute the MILP with different objectives to compute the 
logical bounds of all governing parameters. Step 6 restricts the 
feasible search-space using these bounds. Steps 7–14 enforce 
suitable constraints. Steps 8–10 enable spanning across the 
3We do not argue that the bounds of this representative feasible space 
are necessarily linear. The convex quadrilateral with straight edges is 
only a logical representation and not an argument of linearity. 



Figure 7. A gallery of diverse resultant grid layouts for a 12-element webpage design, generated by our MILP approach. 

design space as identified by Π and Γ. Step 11 computes 
the optimal grid layout solutions. Step 14 gradually loosens 
the alignment constraint if required to ensure that sufficient 
solutions are generated. 

Implementation and computational performance 
The model was coded in Python™ version 3.6. As our solver, 
we use Gurobi™ on a commodity computer (8-core 64-bit 
Intel™ i7™ processor 2.8 GHz with 16 GB RAM). The opti-
miser generates well-aligned and properly structured layouts 
within a very short time. For example, 5 well-structured lay-
outs are produced within 2 seconds for a 5-element webpage 
matching the template shown in Figure 5. For a 12-element 
webpage design task, illustrated in Figure 7, the first 5 solu-
tions are generated within 5 seconds; 10–20 further solutions 
are generated within 30 seconds. High performance is at-
tributed to the use of continuous variables in the MILP model. 
Problem sizes are independent of the canvas size; they are 
O(n2) polynomial functions of the number of elements. The 
model lends itself to techniques that further improve perfor-
mance without compromising optimality. 

STUDY 1: PERCEIVED QUALITY OF GRID LAYOUTS 
Using our MILP approach, we can generate grid layouts with 
controllable levels of grid quality. To validate our approach, 
we assessed the quality of resulting layouts through a ratings-
based study. Here, we compared the computed optimality (by 
optimiser) to the perceived quality (by real users). 

Method 
Participants: Recent research has concluded that expert and 
novice participants alike can differentiate good designs from 
bad ones [54]. Taking this into account, participation was 
not restricted to designers. The study was conducted with 
13 participants (7 male, 6 female), consisting of students and 
researchers at a local university. Participants were between 22 

and 39 years old (Mean 27, SD 5.28). 8 participants had some 
educational or professional background in (UI) design and/or 
HCI. Participation was under informed consent, and the study 
adhered to European privacy laws (GDPR). 

Procedure: Before the study, we generated a set of 24 layouts 
for a 12-element case (Figure 7) in three distinct conditions of 
optimality (8 designs per condition): (1) optimal (Mean opti-
mality = 98.2%), (2) sub-optimal (Mean optimality = 61.6%), 
and (3) far-from-optimal (Mean optimality = 37.5%). All lay-
outs were generated solely using our grid layout objectives. 
During the study, each sketch was presented on a display (15 
inch Retina MacBook) sequentially. Presentation order was 
randomised. 

Task and Measurement: Participants were asked to rate a 
series of user interface sketches, on a scale of 0 (very bad) to 
100 (very good), for their perceived quality. They were asked 
to think about well-designed web pages as a baseline. The 
participants were free to use their own judgement and were 
not biased by telling what well-formed or quality means. 

Results 
The means for optimal, sub-optimal, and far-from-optimal 
designs were 72.12 (SD 21.53), 42.66 (SD 20.41), and 20.63 
(SD 16.96), respectively. The effect of optimality on perceived 
quality was tested with repeated-measures ANOVA. The ef-
fect was found to be significant, F(2,12)=213.10, p<0.0001. 
Table 1 summarises these results and compares them with the 
objected values used in our MILP approach. Post-hoc Tukey 
test showed that optimal and sub-optimal conditions had sig-
nificant difference (p<0.0001), optimal and far-from-optimal 
had significant difference (p<0.0001), and sub-optimal and 
far-from-optimal also had significant difference (p<0.0001). 

These results corroborate the efficacy of the MILP approach to 
generate grid layouts with high perceived quality. It might be 

https://F(2,12)=213.10


Category of instances Optimality (MILP) 
Mean SD 

Quality Rating 
Mean SD 

Optimal 98.2 3.31 72.12 21.53 
Sub-Optimal 61.6 13.19 42.66 20.41 
Far-from-Optimal 37.5 5.05 20.63 16.96 

Table 1. Mean and standard deviations from MILP and from user rat-
ings. The optimality score had significant impact on user ratings. 

noted that the quality rating from participants was consistently 
lower than the computed optimality. This could be attributed 
to the sketch-like appearance of displayed layouts, colouring 
of elements, and personal preferences (as indicated by large 
standard deviations). 

THE GRIDS DESIGN TOOL 
A key goal in the method has been to support interactive ex-
ploration of grid layouts. To investigate this in practice, we 
integrated the MILP model and a solver into GRIDS, an inter-
active tool for wireframing (Figure 8). As designers sketch 
layouts, the solver presents them with multiple suggestions 
in real-time in an example gallery. This enables designers 
to quickly detect good solutions and alternatives, and further 
iterate upon them. The interface is composed of five regions: 

1. Canvas: The canvas, sized according to the dimensions of 
the target UI, is where the designer can concretely place 
layout elements, defining their size as well as position. 

2. Workspace: Adjacent to the canvas, the workspace is used 
to specify elements without defining their actual position or 
size. The workspace can also be used as spare working area 
while moving elements around the canvas. 

3. Element Properties Panel: The left panel is used to specify 
element properties. This includes the element type (heading, 
paragraph, image, etc.), colour, preferential placement, and 
whether the element is locked in place. The panel also has 
a button to trigger layout generation and optimisation. 

4. Suggestions Panel: MILP-produced suggestions are dis-
played in an interactive example gallery [35] on the right 
side. As the design task changes, this gallery is refreshed to 
show updated results. Designers can scroll through several 
suggestions, and edit, save, or delete them. 

5. Saved Designs: At any point, the designer can either save 
the current canvas, or designs from the suggestions panel. 
These can be viewed, in a gallery, which also serves as a 
timeline showing the evolution of design solutions. 

Optimiser-Supported Functionalities 
The generated suggestions aid designers during wireframing. 
In particular, four key design tasks are supported by GRIDS: 

1. Exploring diverse alternatives: As the designer speci-
fies layout elements by placing them into the workspace, a 
diverse set of suggestions is generated and displayed in the 
Suggestions panel. The designer can select from these, to 
pick suitable starting points, and can continue iterating over 
them to achieve a final design. While similar interactions have 
been proposed previously (e.g. [55]), they could not guaran-
tee coverage of the entire design space. Typically, designers 

Canvas Workspace

SuggestionsSaved DesignsElement Properties

Figure 8. The GRIDS tool presents optimiser-generated layout design 
suggestions in an interactive example gallery to support wireframing. 

tend to concentrate their solutions within small parts of the de-
sign space [12]. GRIDS circumvents this issue by facilitating 
exploration of the entire design space (Figure 1.1). 

2. Completing partial solutions: When designing a layout, 
designers often may not have a strong idea on some elements, 
while some might be pre-determined by the design brief, con-
ventions, or product requirements. For the optimiser, the main 
challenge is then to complete the composition of a partial lay-
out. Completing partial designs has been explored for menu 
design previously [2], where the design of sub-menus was 
considered. Our tool supports this for grid layouts. Design-
ers can place well-defined elements onto the canvas, while 
the remaining elements can be specified using the workspace 
(illustrated in Figure 1.2). The optimiser produces results by 
searching for optimal placements of workspace elements on 
the partially-filled canvas, and displays a diverse set of com-
plete solutions in the Suggestions panel. To our knowledge, 
this has not been shown with previous methods. 

3. Finding nearby alternatives: Previous tools (e.g. [45,55]) 
have proposed techniques for finding refinements to a design. 
Typically, these focus on providing ‘fixes’ to improve the 
layout, but not on generating distinct alternatives. With GRIDS, 
a designer can select any design solution, and request the 
optimiser for ‘nearby’ alternatives that are close to the input 
design, but with some variations (illustrated in Figure 1.3). 

4. Finding solutions in constrained spaces: The Element 
Properties panel provides designers with options for constrain-
ing the design space (Figure 9). Locking has been used pre-
viously (e.g. [2, 55]) to restrict some elements from being 
modified. By default, canvas elements are flexible, giving the 
optimiser some freedom in repositioning them to find optimal 
grid layouts. Designers can use the lock button to fix selected 
elements on the canvas, and prevent adjustments. Designers 
can specify preferential placement of layout elements through 
drop-down menus. For instance, they can specify elements as 
headers or footers by assigning the vertical preference, or as 
left/right sidebars by assigning horizontal preference. 



Figure 9. Auto-completed solutions within a constrained sub-space can 
be found by locking elements and specifying placement preferences. 

STUDY 2: EVALUATION WITH DESIGNERS 
To assess how our approach supports early-stage wireframing, 
we conducted a study with designers. Our method follows 
practices in design and creativity research [14]. We aimed 
for 1) realistic design briefs; 2) a representative sample of 
professional GUI designers; 3) a mixed-methods approach 
that gauges both the process and the outcomes of design, in-
cluding designers’ opinions; and 4) the use of standardised 
measurements, here for usability and creativity. 

Method 
Participants: We recruited a total of 16 participants. Their 
age ranged from 22 to 34 years (Mean 29.4, SD 3.50). All 
had formal design education (Mean 4.53 years, SD 2.32); 15 
were professionally employed as designers (Mean 3.97 years, 
SD 2.58), while one was still a student. All had experience 
with digital design tools (Mean 7.44 years, SD 3.63). The de-
signers participated under informed consent. Throughout, the 
European privacy law (GDPR) was followed. The participants 
were compensated with two movie tickets. 

Design tasks: The study consisted of three layout design 
briefs: (1) a personal blog page with a list of required elements 
(10 min), (2) an e-commerce page with freely chosen elements 
(15 min), and (3) a free-form task, chosen by the designer, 
representative of their typical professional design tasks (20 
min). The three tasks ensured variety and sufficient level of 
complexity to test the system critically. The third task allowed 
the designers to freely decide on the type of layout they made, 
so all participants could try out the tool in a natural layout 
design situation they would normally encounter regardless of 
their background. 

Setup: The design tool ran on a MacBook Pro (macOS Mo-
jave 10.14.5). Participants used the tool with a 24 inch LED 
display, Apple magic mouse, and Apple wireless keyboard. 

Procedure: First, participants received a short introduction to 
the tool and a practice task, where they were asked to complete 
simple interactions with the tool. They were allowed to explore 
the tool until they felt comfortable with it. The design tasks 
listed above were then carried out. For each task, participants 
were asked to create at least three final designs. They were 
free to use the tool features as they wanted. To be as close 
to pen-and-paper sketching as possible, the tool, in this study, 
did not support explicit grouping of elements. 
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Figure 10. Timeline showing instances of participants triggering the op-
timiser, scrolling through suggestions, and editing them further. 

Measurements: Each of the created designs had metadata on 
whether it was optimiser-generated, edited by the user, and 
saved as a final design. After the tasks, participants filled out 
the System Usability Scale (SUS) questionnaire (without col-
laboration) [8], the Creativity Support Index (CSI) [10]. They 
also rated usefulness of key features (5-point Likert scale), and 
answered interview questions related to their experience with 
the tool and the suggestions, and gave free feedback. 

Quantitative results 
We analysed the number of designs created by designers, as 
well as scores from the SUS and CSI questionnaires. 

Usage of Suggestions: When creating design solutions for 
the three tasks, participants created a total of 13.75 designs 
on average (SD = 4.59). They incorporated suggestions from 
the optimiser, on average, in 44.17% (SD = 21.42) of their 
final designs. 9 out 16 designers used the suggestions in over 
50% of their designs, while only 3 designers sparingly used 
the suggestions (in <20% of final designs). Users triggered the 
optimiser, and referred to the suggestions at different stages of 
the design process (early exploration and late refinements), as 
illustrated in the timeline in Figure 10. 

SUS and CSI: The mean SUS score was 71.79 (SD 13.95), 
which according to recommendations can be considered ’good’ 
[5] The mean CSI score, which focuses on the tool as a whole, 
was 53.04 (SD 13.58, score range 0-100) and scores for the 
CSI factors (score range 0-20) were: enjoyment 11.88 (SD 
4.29), exploration 12.38 (SD 3.69), expressiveness 9.31 (SD 
3.50), immersion 11.5 (SD 3.46), results worth effort 11.88 
(SD 3.54). The mean score is comparable to previous studies 
using the scale, while exploration was higher than a recent 
bandit-based system designed explicitly for exploration in 
moodboard design [33]. 

Functionality ratings: Participants responded being able to 
“sketch ideas quickly and freely with the tool” fairly well (3.81, 
SD 1.22). The saved designs timeline was seen as very useful 
(4.44, SD 0.89), and the separate canvas and workspace was 
quite useful (3.75, SD 1.06). Participants found the explo-
ration feature itself somewhat useful (3.50, SD 1.15), while 
the usefulness of the suggestions as starting points received 
mixed feedback 2.8 (SD 1.33). 

Qualitative results 
Participants found the tool simple and easy to use overall. 8 
out of 16 spontaneously commented on ease of use. Although 
there were some shortcomings with the tool, because of it 
being a prototype, most participants (11 out of 16) commented 



that liked the idea of interactive layout exploration. Three 
participants also pointed out that it is a new idea, “kind of a 
new way of thinking about layouts” (P8). 

Participants pointed out that the possible uses for exploration 
were both in the beginning of the design process to get inspira-
tion, or to fit already existing content on a layout, and later in 
the process to compare variations of existing layouts. Explo-
ration was especially seen as useful during early-stage design 
(14 out of 16), as it could help “spur creativity and get away 
from the obvious choices” (P2). Four participants commented 
on fitting required content on a layout e.g. “sometimes you get 
requirements of elements you have to fit in the page so the idea 
of getting different possibilities of where the elements could 
be is really nice”. For simple layouts, the exploration works 
quite well, and participants found the suggestions useful: “If 
you have a very simple layout you could take them just as they 
were” (P3). For more complex layouts, the algorithm lacks 
full support for more complex element hierarchies and groups, 
resulting in suggestions being not very relevant to the design 
at hand. Participants still said they could get inspiration from 
those suggestions, but they required more editing: “as inspira-
tion to take parts of even though maybe the whole layout isn’t 
useful” (P3). It encouraged the designer to think about “what 
kind of layout would I design if that element was there” (P2). 

Most participants reported preference for the availability of 
grid suggestions. Many (7 out of 16) reported that they usually 
sketch layout ideas with pen and paper, with most (15 out 
of 16) also utilising digital tools, mainly Sketch and Adobe 
applications. Some participants noted that while they could 
explore their own ideas with these tools, they could not really 
get new ideas and inspiration in the same way as with this 
exploration tool. Exploration is “a feature that’s not avail-
able in the industry at this moment” (P13). Creating rough 
layouts is “an important task you have to do all the time in 
design so ... having such a tool makes sense” (P3). Four 
participants said that they would like to use layout exploration 
as an integrated part of an existing design tool. Some of the 
most desired additions to exploration were element grouping, 
additional exploration dimensions (e.g. colour, accessibility), 
suggestions based on the layout type, and more settings for 
elements. 

SUMMARY 
We presented a novel mixed integer linear programming 
(MILP) method for generating grid layouts interactively. The 
resulting layouts are well-formed, ensuring proper packing, 
rectangularity, grouping, and preferential placement. We fur-
ther optimise for grid alignment, a factor correlated with aes-
thetic perception of layouts [43]. Grid generation at this level 
of completeness has not been demonstrated with exact meth-
ods before. Study 1 validated the quality of generated layouts. 
Owing to the MILP approach, we can quantify and control 
how far grid layouts are from optimum and obtain a well-
distributed set across the design space. Moreover, we have 
shown this approach to be efficient for interactive use. In 
contrast to a recent paper that used black-box optimisation, 
which throttled at problem sizes of 10 or more elements [55], 
our model can easily handle such cases. We demonstrated 

the feasibility of our approach by implementing it within the 
GRIDS tool. Besides generating controllably diverse sets of 
alternatives, it enables designers to enforce constraints over 
the input, and supports features to explore diverse solutions, 
exploit similar designs, and complete partial layouts. While 
our approach could provide immediate benefit to novices by 
facilitating grid-based layout design, we went a step further 
to evaluate with designers, with professional experience, on 
the topic. We received positive feedback from designers about 
the support for layout exploration, especially during early 
stages of design. We also observed active usage of optimised 
suggestions in final designs. 

LIMITATIONS AND FUTURE WORK 
While our results show that MILP is a promising method to 
help designers explore grid layouts, empirical data pinpoints 
three opportunities for further improvements that can be built 
on the approach. First, Study 2 exposed an issue with element 
grouping, which made suggestions less relevant for problems 
where maintaining original grouping was vital. While the 
MILP model supports grouping, a designer would need to 
put effort to express groups via the tool. Hence, two goals 
for future work are, on the one hand, to develop efficient 
interaction techniques for specifying grouping, and on the 
other, to extend the MILP model to cover not only contiguity 
as a visual cue, but also colour and other commonly-known 
Gestalt principles [47]. 

Second, and related, while designers found the approach most 
useful for early-stage exploration, it became relatively less 
useful as the layout became more well-defined. One goal 
for future work is to bridge the gap between early-stage grid 
designs and higher-fidelity prototypes. MILP allows flexible 
and extensible expression of new objectives and constraints, 
however it insists on relaxed or linearised versions of design 
objectives. Some key objectives that need to be identified 
and formulated for MILP include selection and visual search 
performance, as well as aesthetic objectives, such as colour 
harmony and clutter. Finally, the optimisation system presently 
does not learn. Our current optimisation model operates on 
general grid layout principles. We foresee two possibilities 
for tuning it using machine learning methods: (1) If one could 
detect the designer’s “style” and whether the designer is ex-
ploring or exploiting (e.g., [33]), the suggestions could be 
made even more relevant; (2) Data-driven approaches could be 
used to learn layout styles typical to a domain and weigh the 
parameters of the model to bias it toward that style (e.g, [62]). 

OPEN CODE 
We support further research efforts by providing full math-
ematical formulations in the Supplementary Material, and 
an open code base, with instructions, on our project page: 
https://userinterfaces.aalto.fi/grids. 
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